A CAD System for Alzheimer's Disease Classification Using Neuroimaging MRI 2D Slices.

Monika Sethi, Shalli Rani, Aman Singh, Juan Luis Vidal Mazón
Author Information
  1. Monika Sethi: Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India. ORCID
  2. Shalli Rani: Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India. ORCID
  3. Aman Singh: Faculty of Engineering, Universidade Internacional do Cuanza, Estrada Nacional 250, Bairro Kaluapanda, Cuito-Bié, Angola. ORCID
  4. Juan Luis Vidal Mazón: Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain.

Abstract

Developments in medical care have inspired wide interest in the current decade, especially to their services to individuals living prolonged and healthier lives. Alzheimer's disease (AD) is the most chronic neurodegeneration and dementia-causing disorder. Economic expense of treating AD patients is expected to grow. The requirement of developing a computer-aided technique for early AD categorization becomes even more essential. Deep learning (DL) models offer numerous benefits against machine learning tools. Several latest experiments that exploited brain magnetic resonance imaging (MRI) scans and convolutional neural networks (CNN) for AD classification showed promising conclusions. CNN's receptive field aids in the extraction of main recognizable features from these MRI scans. In order to increase classification accuracy, a new adaptive model based on CNN and support vector machines (SVM) is presented in the research, combining both the CNN's capabilities in feature extraction and SVM in classification. The objective of this research is to build a hybrid CNN-SVM model for classifying AD using the MRI ADNI dataset. Experimental results reveal that the hybrid CNN-SVM model outperforms the CNN model alone, with relative improvements of 3.4%, 1.09%, 0.85%, and 2.82% on the testing dataset for AD vs. cognitive normal (CN), CN vs. mild cognitive impairment (MCI), AD vs. MCI, and CN vs. MCI vs. AD, respectively. Finally, the proposed approach has been further experimented on OASIS dataset leading to accuracy of 86.2%.

References

  1. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006189 [PMID: 22229116]
  2. Sci Rep. 2019 Dec 3;9(1):18150 [PMID: 31796817]
  3. Neuroimage. 2017 Jul 15;155:530-548 [PMID: 28414186]
  4. Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:414-417 [PMID: 31327984]
  5. IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):912-921 [PMID: 32750846]
  6. Int J Neural Syst. 2020 Jun;30(6):2050032 [PMID: 32498641]
  7. Front Public Health. 2022 Mar 17;10:858327 [PMID: 35372222]
  8. Front Aging Neurosci. 2019 Aug 20;11:220 [PMID: 31481890]
  9. Brain Sci. 2019 Aug 28;9(9): [PMID: 31466398]
  10. Brief Bioinform. 2022 Mar 10;23(2): [PMID: 35183061]
  11. Curr Med Imaging Rev. 2020;16(1):27-35 [PMID: 31989891]
  12. Biomed Res Int. 2022 Jan 22;2022:8739960 [PMID: 35103240]
  13. Neurobiol Aging. 1995 May-Jun;16(3):271-8; discussion 278-84 [PMID: 7566337]
  14. Comput Vis ECCV. 2020 Aug;12535:355-364 [PMID: 37283785]
  15. Alzheimers Dement. 2005 Jul;1(1):55-66 [PMID: 17476317]
  16. Neuroimage. 2018 Dec;183:504-521 [PMID: 30130647]
  17. Neuroscience. 2021 Apr 15;460:43-52 [PMID: 33465405]
  18. J Magn Reson Imaging. 2008 Apr;27(4):685-91 [PMID: 18302232]
  19. Sensors (Basel). 2019 Jun 11;19(11): [PMID: 31212698]
  20. Neuroimage. 2019 Apr 1;189:276-287 [PMID: 30654174]
  21. Alzheimers Dement. 2009 May;5(3):234-70 [PMID: 19426951]
  22. Brain Inform. 2018 May 31;5(2):2 [PMID: 29881892]
  23. Mater Today Proc. 2021 Mar 22;: [PMID: 33777707]
  24. Comput Math Methods Med. 2021 Oct 4;2021:4186666 [PMID: 34646334]
  25. Neuroimage. 2020 Mar;208:116459 [PMID: 31837471]

Grants

  1. P01 AG003991/NIA NIH HHS

MeSH Term

Alzheimer Disease
Brain
Cognitive Dysfunction
Humans
Magnetic Resonance Imaging
Neural Networks, Computer
Neuroimaging

Word Cloud

Created with Highcharts 10.0.0ADvsMRImodelCNNclassificationdatasetCNMCIAlzheimer'slearningscansCNN'sextractionaccuracySVMresearchhybridCNN-SVMcognitiveDevelopmentsmedicalcareinspiredwideinterestcurrentdecadeespeciallyservicesindividualslivingprolongedhealthierlivesdiseasechronicneurodegenerationdementia-causingdisorderEconomicexpensetreatingpatientsexpectedgrowrequirementdevelopingcomputer-aidedtechniqueearlycategorizationbecomesevenessentialDeepDLmodelsoffernumerousbenefitsmachinetoolsSeverallatestexperimentsexploitedbrainmagneticresonanceimagingconvolutionalneuralnetworksshowedpromisingconclusionsreceptivefieldaidsmainrecognizablefeaturesorderincreasenewadaptivebasedsupportvectormachinespresentedcombiningcapabilitiesfeatureobjectivebuildclassifyingusingADNIExperimentalresultsrevealoutperformsalonerelativeimprovements34%109%085%282%testingnormalmildimpairmentrespectivelyFinallyproposedapproachexperimentedOASISleading862%CADSystemDiseaseClassificationUsingNeuroimaging2DSlices

Similar Articles

Cited By