Explaining the interaction of mangiferin with MMP-9 and NF-ƙβ: a computational study.

Andy Gálvez-Rodríguez, Anthuan Ferino-Pérez, Zalua Rodríguez-Riera, Idania Rodeiro Guerra, David Řeha, Babak Minofar, Ulises J Jáuregui-Haza
Author Information
  1. Andy Gálvez-Rodríguez: Instituto Superior de Tecnologías Y Ciencias Aplicadas (InSTEC), Universidad de La Habana, La Habana, 10600, Havana, CP, Cuba.
  2. Anthuan Ferino-Pérez: Department of Chemistry, KU Leuven Chem&Tech, Celestijnenlaan 200F, Bus 2404, 3001, Louvain, Belgium.
  3. Zalua Rodríguez-Riera: Instituto Superior de Tecnologías Y Ciencias Aplicadas (InSTEC), Universidad de La Habana, La Habana, 10600, Havana, CP, Cuba.
  4. Idania Rodeiro Guerra: Departamento de Farmacología, Instituto de Ciencias del Mar, La Habana, 10600, Havana, CP, Cuba.
  5. David Řeha: Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333, Nove Hrady, Czech Republic.
  6. Babak Minofar: Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333, Nove Hrady, Czech Republic.
  7. Ulises J Jáuregui-Haza: Instituto Tecnológico de Santo Domingo (INTEC), Avenida de los Próceres #49, Los Jardines del Norte 10602, Santo Domingo, Dominican Republic. Ulises.jauregui@intec.edu.do.

Abstract

Mangiferin is a glycosylated xanthone widely distributed in nature, which exhibits wide pharmacological activities, highlighting its anti-cancer properties. Mangiferin interferes with inflammation, lipid, and calcium signaling, which selectively inhibits multiple NFkB target genes as interleukin-6, tumor necrosis factor, plasminogen, and matrix metalloproteinase, among others. In this work, the interactions of this polyphenol with MMP-9 and NF-κβ are characterized by using computational chemistry methods. The results show MMP-9 inhibition by mangiferina is characterized for the interact with the catalytic Zn atom through a penta-coordinate structure. It is also demonstrated through a strong charge transfer established between mangiferin and Zn in the QM/MM study. Concerning the mangiferin/NF-κβ system, the 92.3% of interactions between p50 sub-unity and DNA are maintained with a binding energy of - 8.04 kcal/mol. These findings indicate that mangiferin blocks the p50-p65/DNA interaction resulting in the loss of the functions of this hetero-dimeric member and suggesting inhibition of the cancer progression. Experimental results concerning the anti-cancer properties of mangiferin show that this natural compound can inhibit selectively MMP-9 and NF-ƙβ. Although the anti-tumor properties of mangiferin are well defined, its molecular mechanisms of actions are not described. In this work, a computational study is carried out to characterize the interactions of mangiferin with these molecular targets. The results obtained corroborate the anti-proliferative and anti-apoptotic activity of mangiferin and provide a depiction of its mechanisms of action.

Keywords

References

  1. B. Faubert, A. Solmonson, R. J. DeBerardinis, Science, 2020, 368, eaaw5473.
  2. Malik V, Garg S, Afzal S, Dhanjal JK, Yun CO, Kaul SC, Sundar D, Wadhwa R (2020) Int J Mol Sci 21:5463 [>PMCID: ]
  3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Int J Cancer 149:778 [DOI: 10.1002/ijc.33588]
  4. Dufour A, Sampson NS, Li J, Kuscu C, Rizzo RC, DeLeon JL, Zhi J, Jaber N, Liu E, Zucker S (2011) Cancer Res 71:4977 [PMID: 21646471]
  5. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T (2020) Eur J Med Chem 194:112260 [PMID: 32224379]
  6. Özdemir A, Sever B, Altıntop MD, Temel HE, Atlı O, Baysal M, Demirci F (2017) Molecules 22:1109 [>PMCID: ]
  7. Sanapalli BKR, Yele V, Jupudi S, Karri VVSR (2021) RSC Adv 11:26820 [PMID: 35480006]
  8. Aggarwal BB, Sung B (2011) Cancer Discov 1:469 [PMID: 22586649]
  9. Xu L, Russu WA (2013) Bioorg Med Chem 21:540 [PMID: 23219854]
  10. Baldwing AS (1996) Annu Rev Immunol 14:649 [DOI: 10.1146/annurev.immunol.14.1.649]
  11. Ichiki H, Miura T, Kubo M, Ishihara E, Komatsu Y, Tanikawa K, Okada M (1998) Biol Pharm Bull 21:1389 [PMID: 9881663]
  12. Lin H, Chen R, Liu X, Sheng F, Zhang H (2010) Spectrochim Acta, Part A 75:1584 [DOI: 10.1016/j.saa.2010.02.023]
  13. Dar A, Faizi S, Naqvi S, Roome T, Zikr-ur-Rehman S, Ali M, Firdous S, Moin ST (2005) Biol Pharm Bull 28:596 [PMID: 15802793]
  14. Hernandez P, Rodriguez PC, Delgado R, Walczak H (2007) Pharmacol Res 55:167 [PMID: 17184998]
  15. Beltrán AE, Alvarez Y, Xavier FE, Hernanz R, Rodriguez J, Núñez AJ, Alonso MJ, Salaices M (2004) Eur J Pharmacol 499:297 [PMID: 15381052]
  16. Garrido G, González D, Lemus Y, Garcıa D, Lodeiro L, Quintero G, Delporte C, Núñez-Sellés AJ, Delgado R (2004) Pharmacol Res 50:143 [PMID: 15177302]
  17. Guha S, Ghosal S, Chattopadhyay U (1996) Chemotherapy 42:443 [PMID: 8957579]
  18. A. J. Núñez Selles, M. Daglia, L. Rastrelli, BioFactors, 2016, 42, 475.
  19. Khurana RK, Kaur R, Lohan S, Singh KK, Singh B (2016) Pharm Pat Anal 5:169 [PMID: 27088726]
  20. Li H, Huang J, Yang B, Xiang T, Yin X, Peng W, Cheng W, Wan J, Luo F, Li H (2013) Toxicol Appl Pharmacol 272:180 [PMID: 23707762]
  21. Takeda T, Tsubaki M, Kino T, Yamagishi M, Lida M, Itoh T, Imano M, Tanabe G, Muraoka O, Satou T (2016) Chem-Biol Interact 251:26 [PMID: 26996543]
  22. Jinson G, Li L, Zian Z, Cheng X, Junjian Z (2015) Oncol Rep 33:2815 [DOI: 10.3892/or.2015.3919]
  23. Ji-Sun J, Kangsik J, Dong-Hyun K, Hee-Sun K (2010) Pharmacol Res 66:95
  24. M. Imran, M. Sajid Arshad, M. Sadiq Butt, J. H. Kwon, M. Umair Arshad, M. Tauseef Sultan, Lipids Health Dis. 2017, 16, 1.
  25. Garrido G, Blanco-Molina M, Sancho R, Macho A, Delgado R, Muñoz M (2005) Phytother Res 19:211 [PMID: 15934029]
  26. HyperChem Professional Release v7.01 for Windows. 2002, Hypercube Inc.: Gainesville, FL.
  27. Stewart JJ (2013) J Mol Model 19:1 [PMID: 23187683]
  28. W. Thiel, Theor. App. Comput. Chem. 2005, 559.
  29. Parr RG, Yang W (1996) J Phys Chem 100:12974 [DOI: 10.1021/jp960669l]
  30. DiLabio GA, Johnson ER, Otero-de-la-Roza A (2013) Phys Chem Chem Phys 15:12821 [PMID: 23803877]
  31. Ebadi A, Noei M (2017) J Mol Model 23:38 [PMID: 28120121]
  32. Peverati R (2014) D G Truhlar 372:20120476
  33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104 [PMID: 20423165]
  34. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem 113:6378 [DOI: 10.1021/jp810292n]
  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Gliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,D. J Fox, Gaussian 09, Revision E.01. 2013, Gaussian, Inc.: Wallingford CT.
  36. Stewart JJP, MOPAC2016 (2016) Stewart Computational Chemistry: Colorado Springs, CO, USA
  37. Oreluk J, Liu Z, Hegde A, Li W, Packard A, Frenklach M, Zubarev D (2018) Sci Rep 8:13248 [PMID: 30185953]
  38. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899 [DOI: 10.1021/cr00088a005]
  39. Bhattacharjee R, Majumder T, Datta A (2019) J Comput Chem 40:1488 [PMID: 30854679]
  40. Sebastian S, Sundaraganesan N (2010) Spectrochim Acta, Part A 75:941 [DOI: 10.1016/j.saa.2009.11.030]
  41. Subashchandrabose S, Krishnan AR, Saleem H, Parameswari R, Sundaraganesan N, Thanikachalam V, Manikandan G (2010) Spectrochim Acta, Part A 77:877 [DOI: 10.1016/j.saa.2010.08.023]
  42. E. D. Glendenning, A. E. Reed, J. E. Carpenter, F. Weinhold, 2001, Gaussian Inc.: Pittsburg, PA, US.
  43. Lu T, Chen F (2012) J Comput Chem 33:580 [PMID: 22162017]
  44. R. D. Dennington, T. A. Keith, J. M. Millam, 2008, GaussView 5.0. Gaussian, Inc.
  45. Durrant JD, McCammon JA (2011) J Mol Graphics Modell 29:888 [DOI: 10.1016/j.jmgm.2011.01.004]
  46. Hu X, Balaz S, Shelver WHJ (2004) J Mol Graphics Modell 22:293 [DOI: 10.1016/j.jmgm.2003.11.002]
  47. Hu X, Shelver WHJ (2003) J Mol Graphics Modell 22:115 [DOI: 10.1016/S1093-3263(03)00153-0]
  48. Hou X, Du J, Zhang J, Du L, Fang H, Li M (2013) J Chem Inf Model 53:188 [PMID: 23244516]
  49. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785 [PMID: 19399780]
  50. Rowsell S, Maciel FV, Hawtin P, Minshull CA, Jepson H, Brockbank SMV, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA (2002) J Mol Biol 319:173 [PMID: 12051944]
  51. Chen FE, Huang DB, Chen YQ, Ghosh G (1998) Nature 391:410 [PMID: 9450761]
  52. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminf 3:1 [DOI: 10.1186/1758-2946-3-1]
  53. G. Klebe, H. Li, J. H. Jensen, J. E. Nielsen, P. Czodrowski, T. J. Dolinsky, N. A. Baker, Nucleic Acids Res. 2007, 35(suppl_2), W522.
  54. J. A. McCammon, J. E. Nielsen, N. A. Baker, T. J. Dolinsky, Nucleic Acids Res. 2004, 32(suppl_2), W665.
  55. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157 [PMID: 15116359]
  56. Gasteiger J, Marsili M (1980) Tetrehaedron 36:3219 [DOI: 10.1016/0040-4020(80)80168-2]
  57. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639 [DOI: 10.1002/(SICI)1096-987X(19981115)19]
  58. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157 [PMID: 15116359]
  59. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269 [DOI: 10.1021/j100142a004]
  60. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639 [DOI: 10.1002/(SICI)1096-987X(19981115)19]
  61. Berendsen HJ, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43 [DOI: 10.1016/0010-4655(95)00042-E]
  62. Lindahl E, Hess B, van Der Spoel D (2001) J Mol Mod 7:306 [DOI: 10.1007/s008940100045]
  63. van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) J Comput Chem 26:1701 [DOI: 10.1002/jcc.20291]
  64. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215 [DOI: 10.1007/s00214-007-0310-x]
  65. Boys SF, Bernardi F (1970) Mol Phys 19:553 [DOI: 10.1080/00268977000101561]
  66. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024 [DOI: 10.1063/1.472902]
  67. Mardirossian N, Head-Gordon M (2017) Mol Phys 115:2315 [DOI: 10.1080/00268976.2017.1333644]
  68. Nowroozi A, Raissi H, Hajiabadi H, Mm Jahani P (2011) Int J Quantum Chem 111:3040 [DOI: 10.1002/qua.22635]
  69. Shainyan BA, Chipanina NN, Aksamentova TN, Oznobikhina LP, Rosentsveig GN, Rosentsveig IB (2010) Tetrahedron 66:8551 [DOI: 10.1016/j.tet.2010.08.076]
  70. Sosa GL, Peruchena NM, Contreras RH, Castro EA (2002) J Mol Struct: THEOCHEM 577:209 [DOI: 10.1016/S0166-1280(01)00670-4]
  71. da Veiga AA, Bragança VAN, Holanda LHC, Braga RP Jr, Sousa AC, Santos KL, Vale JK, Borges RS (2021) Chem Data Collect 31:10062 [DOI: 10.1016/j.cdc.2020.100602]
  72. Alberts IL, Nadassy K, Wodak SJ (1998) Protein Sci 7:1700 [PMID: 10082367]
  73. Rouffet M, Denhez C, Bourguet E, Bohr F, Guillaume D (2009) Org Biomol Chem 7:3817 [PMID: 19707688]
  74. Browner MF, Smith WW, Castelhano AL (1995) Biochemistry 34:6602 [PMID: 7756291]
  75. Pavlovsky AG, Williams MG, Ye Q-Z, Ortwine DF, Purchase CF, White AD, Dhanaraj V, Roth BD, Johnson LL, Hupe D (1999) Protein Sci 8:1455 [PMID: 10422833]
  76. Yamamoto D, Takai S, Jin D, Inagaki S, Tanaka K, Miyazaki M (2007) J Mol Cell Cardiol 43:670 [PMID: 17884087]
  77. Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Bode W, Goettig P (2007) J Mol Biol 371:989 [PMID: 17599356]
  78. Tsai K-C, Teng L-W, Shao Y-M, Chen Y-C, Lee Y-C, Li M, Hsiao N-W (2009) Bioorg Med Chem Lett 19:5665 [PMID: 19726185]
  79. Shoji K, Tsubaki M, Yamazoe Y, Satou T, Itoh T, Kidera Y, Tanimori Y, Yanae M, Matsuda H, Taga A (2011) Arch Pharmacal Res 34:469 [DOI: 10.1007/s12272-011-0316-8]
  80. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442 [DOI: 10.1002/1096-987X(200012)21]
  81. Philipp DM, Friesner RA (1999) J Comput Chem 20:1468 [DOI: 10.1002/(SICI)1096-987X(19991115)20]

Grants

  1. PN223LH010-029/Ministerio de Ciencia, Tecnología y Medio Ambiente

MeSH Term

Matrix Metalloproteinase 9
NF-kappa B
Tumor Necrosis Factor-alpha
Xanthones

Chemicals

NF-kappa B
Tumor Necrosis Factor-alpha
Xanthones
mangiferin
Matrix Metalloproteinase 9

Word Cloud

Created with Highcharts 10.0.0mangiferinMMP-9Mangiferinpropertiesinteractionscomputationalresultsstudyanti-cancerselectivelyworkcharacterizedshowinhibitionZnQM/MMinteractionmolecularmechanismsactivityglycosylatedxanthonewidelydistributednatureexhibitswidepharmacologicalactivitieshighlightinginterferesinflammationlipidcalciumsignalinginhibitsmultipleNFkBtargetgenesinterleukin-6tumornecrosisfactorplasminogenmatrixmetalloproteinaseamongotherspolyphenolNF-κβusingchemistrymethodsmangiferinainteractcatalyticatompenta-coordinatestructurealsodemonstratedstrongchargetransferestablishedConcerningmangiferin/NF-κβsystem923%p50sub-unityDNAmaintainedbindingenergyof - 804 kcal/molfindingsindicateblocksp50-p65/DNAresultinglossfunctionshetero-dimericmembersuggestingcancerprogressionExperimentalconcerningnaturalcompoundcaninhibitNF-ƙβAlthoughanti-tumorwelldefinedactionsdescribedcarriedcharacterizetargetsobtainedcorroborateanti-proliferativeanti-apoptoticprovidedepictionactionExplainingNF-ƙβ:Anti-cancerMoleculardockingNaturalbondanalysis

Similar Articles

Cited By