Engineering approaches for cardiac organoid formation and their characterization.

Binata Joddar, Sylvia L Natividad-Diaz, Andie E Padilla, Aibhlin A Esparza, Salma P Ramirez, David R Chambers, Hakima Ibaroudene
Author Information
  1. Binata Joddar: Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas. Electronic address: bjoddar@utep.edu.
  2. Sylvia L Natividad-Diaz: Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
  3. Andie E Padilla: Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas.
  4. Aibhlin A Esparza: Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas.
  5. Salma P Ramirez: Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL); Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas.
  6. David R Chambers: Southwest Research Institute, San Antonio, Texas.
  7. Hakima Ibaroudene: Southwest Research Institute, San Antonio, Texas.

Abstract

Cardiac organoids are 3-dimensional (3D) structures composed of tissue or niche-specific cells, obtained from diverse sources, encapsulated in either a naturally derived or synthetic, extracellular matrix scaffold, and include exogenous biochemical signals such as essential growth factors. The overarching goal of developing cardiac organoid models is to establish a functional integration of cardiomyocytes with physiologically relevant cells, tissues, and structures like capillary-like networks composed of endothelial cells. These organoids used to model human heart anatomy, physiology, and disease pathologies in vitro have the potential to solve many issues related to cardiovascular drug discovery and fundamental research. The advent of patient-specific human-induced pluripotent stem cell-derived cardiovascular cells provide a unique, single-source approach to study the complex process of cardiovascular disease progression through organoid formation and incorporation into relevant, controlled microenvironments such as microfluidic devices. Strategies that aim to accomplish such a feat include microfluidic technology-based approaches, microphysiological systems, microwells, microarray-based platforms, 3D bioprinted models, and electrospun fiber mat-based scaffolds. This article discusses the engineering or technology-driven practices for making cardiac organoid models in comparison with self-assembled or scaffold-free methods to generate organoids. We further discuss emerging strategies for characterization of the bio-assembled cardiac organoids including electrophysiology and machine-learning and conclude with prospective points of interest for engineering cardiac tissues in vitro.

Keywords

References

  1. Nat Rev Cardiol. 2016 Jun;13(6):333-49 [PMID: 27009425]
  2. Development. 2021 Sep 15;148(18): [PMID: 34494114]
  3. Pharmacol Ther. 2009 Aug;123(2):255-78 [PMID: 19460403]
  4. Adv Physiol Educ. 2017 Mar 1;41(1):29-37 [PMID: 28143820]
  5. Stem Cell Reports. 2018 Apr 10;10(4):1222-1236 [PMID: 29576540]
  6. ACS Biomater Sci Eng. 2019 Sep 9;5(9):4551-4563 [PMID: 32258387]
  7. ACS Appl Mater Interfaces. 2022 May 18;14(19):21800-21813 [PMID: 35533308]
  8. Expert Opin Biol Ther. 2015 Jan;15(1):3-7 [PMID: 25482878]
  9. PLoS One. 2015 Sep 02;10(9):e0137301 [PMID: 26332321]
  10. Cell Stem Cell. 2020 Mar 5;26(3):309-329 [PMID: 32142662]
  11. Circulation. 2000 Nov 7;102(19 Suppl 3):III56-61 [PMID: 11082363]
  12. Development. 2017 Mar 15;144(6):1118-1127 [PMID: 28174241]
  13. Semin Cell Dev Biol. 2021 Oct;118:119-128 [PMID: 33775518]
  14. Front Pharmacol. 2018 Jan 23;9:6 [PMID: 29410625]
  15. Front Physiol. 2017 Dec 12;8:986 [PMID: 29311950]
  16. Tissue Eng Part C Methods. 2015 May;21(5):467-79 [PMID: 25333967]
  17. Tissue Eng Part C Methods. 2013 Sep;19(9):730-7 [PMID: 23320912]
  18. Nat Commun. 2021 Aug 26;12(1):5142 [PMID: 34446706]
  19. Acta Biomater. 2016 Apr 15;35:32-41 [PMID: 26945632]
  20. Curr Opin Hematol. 2015 May;22(3):252-7 [PMID: 25767955]
  21. Adv Healthc Mater. 2012 Jan 11;1(1):10-25 [PMID: 23184683]
  22. Biomaterials. 2016 Oct;105:52-65 [PMID: 27509303]
  23. iScience. 2022 Apr 29;25(5):104330 [PMID: 35602954]
  24. Biomaterials. 2014 Feb;35(5):1429-38 [PMID: 24268664]
  25. Nat Methods. 2016 Apr 28;13(5):405-14 [PMID: 27123816]
  26. Cell. 2021 Jun 10;184(12):3299-3317.e22 [PMID: 34019794]
  27. Circ Res. 2016 Jan 8;118(1):56-72 [PMID: 26503464]
  28. Anal Chem. 2022 Jan 18;94(2):1365-1372 [PMID: 34928595]
  29. ACS Omega. 2022 Apr 13;7(16):13894-13905 [PMID: 35559153]
  30. Platelets. 2017 Jul;28(5):449-456 [PMID: 28358586]
  31. J Biomed Mater Res B Appl Biomater. 2019 Feb;107(2):314-323 [PMID: 29656592]
  32. Annu Rev Biomed Eng. 2014 Jul 11;16:1-28 [PMID: 24819474]
  33. Biomaterials. 2009 Feb;30(4):583-8 [PMID: 18990437]
  34. Adv Healthc Mater. 2013 Jan;2(1):57-71 [PMID: 23184739]
  35. J Electrocardiol. 2005 Oct;38(4 Suppl):45-50 [PMID: 16226073]
  36. Int J Nanomedicine. 2018 Nov 22;13:7891-7903 [PMID: 30538466]
  37. RSC Adv. 2016 Jan 1;6(11):8980-8991 [PMID: 26998251]
  38. Front Cell Dev Biol. 2021 Dec 02;9:788955 [PMID: 34926467]
  39. ACS Appl Mater Interfaces. 2020 May 13;12(19):21450-21462 [PMID: 32326701]
  40. Front Pharmacol. 2021 May 07;12:667010 [PMID: 34025426]
  41. Am J Transl Res. 2014 Jan 15;6(2):114-8 [PMID: 24489990]
  42. Circ Res. 2019 Apr 12;124(8):1172-1183 [PMID: 30700234]
  43. Front Physiol. 2021 Apr 27;12:650714 [PMID: 33986691]
  44. Annu Rev Cell Dev Biol. 2011;27:563-84 [PMID: 21756109]
  45. Nat Biotechnol. 2021 Jun;39(6):737-746 [PMID: 33558697]
  46. Lab Chip. 2018 Aug 7;18(16):2323-2347 [PMID: 30010168]
  47. Lab Chip. 2015 Dec 21;15(24):4542-54 [PMID: 26524977]
  48. Biomaterials. 2015 Sep;63:158-67 [PMID: 26102992]
  49. BMB Rep. 2016 Jan;49(1):26-36 [PMID: 26497579]
  50. Adv Drug Deliv Rev. 2016 Jan 15;96:214-24 [PMID: 26026976]
  51. Nat Biomed Eng. 2022 Apr;6(4):372-388 [PMID: 35478228]
  52. Prog Biomater. 2020 Sep;9(3):125-137 [PMID: 32978746]
  53. Stem Cell Res. 2017 Dec;25:83-87 [PMID: 29121521]
  54. Nat Commun. 2020 Mar 27;11(1):1585 [PMID: 32221292]
  55. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:582-590 [PMID: 30889733]
  56. J Tissue Eng Regen Med. 2022 Aug;16(8):732-743 [PMID: 35621199]
  57. Pflugers Arch. 2021 Jul;473(7):1061-1085 [PMID: 33629131]
  58. J Mol Cell Cardiol. 1999 Aug;31(8):1419-27 [PMID: 10423340]
  59. Biomaterials. 2019 Feb;194:73-83 [PMID: 30583150]
  60. Nat Rev Cardiol. 2020 Aug;17(8):457-473 [PMID: 32231331]
  61. Tissue Eng Part C Methods. 2020 Jan;26(1):44-55 [PMID: 31797733]
  62. ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22152-22163 [PMID: 31194504]
  63. SLAS Technol. 2017 Oct;22(5):536-546 [PMID: 28430559]
  64. Sci Am. 1992 Mar;266(3):44-51 [PMID: 1374932]
  65. Adv Healthc Mater. 2020 Apr;9(8):e1901373 [PMID: 32090507]
  66. Chem Res Toxicol. 2021 Sep 20;34(9):2110-2124 [PMID: 34448577]
  67. ACS Biomater Sci Eng. 2020 Feb 10;6(2):1135-1143 [PMID: 33464856]
  68. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8372-E8381 [PMID: 28916735]
  69. Biomaterials. 2012 Jan;33(3):762-70 [PMID: 22056285]
  70. Nat Biotechnol. 2014 Nov;32(11):1151-1157 [PMID: 25306246]
  71. Stem Cell Reports. 2021 May 11;16(5):1228-1244 [PMID: 33891865]
  72. Cells Tissues Organs. 2012;196(1):34-47 [PMID: 22249133]
  73. Sci Rep. 2018 Mar 26;8(1):5168 [PMID: 29581463]
  74. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12601-6 [PMID: 23858432]
  75. Cell Stem Cell. 2018 Mar 1;22(3):310-324 [PMID: 29499151]
  76. PLoS One. 2018 Dec 20;13(12):e0209574 [PMID: 30571786]
  77. J R Soc Interface. 2012 Jan 7;9(66):1-19 [PMID: 21900319]
  78. J Mater Sci Mater Med. 2013 Nov;24(11):2577-87 [PMID: 23851928]
  79. Nano Lett. 2019 Aug 14;19(8):5781-5789 [PMID: 31347851]
  80. FASEB J. 2014 Feb;28(2):644-54 [PMID: 24174427]
  81. Lab Chip. 2014 Mar 7;14(5):869-82 [PMID: 24352498]
  82. Sci Rep. 2016 Aug 31;6:32456 [PMID: 27578567]
  83. Pharmaceutics. 2020 Dec 06;12(12): [PMID: 33291351]
  84. Cell Stem Cell. 2021 Feb 4;28(2):230-240.e6 [PMID: 33176168]
  85. Front Neurosci. 2016 Mar 30;10:121 [PMID: 27065786]
  86. Tissue Eng. 2006 Apr;12(4):917-25 [PMID: 16674303]
  87. PLoS One. 2018 Dec 17;13(12):e0209162 [PMID: 30557409]
  88. Stem Cells. 2014 Dec;32(12):3037-45 [PMID: 25070152]
  89. Prog Biomater. 2021 Jun;10(2):91-117 [PMID: 34075571]
  90. Sci Rep. 2016 Feb 24;6:21387 [PMID: 26906177]
  91. Exp Cell Res. 2013 Oct 1;319(16):2409-17 [PMID: 23800466]
  92. Biomaterials. 2013 Sep;34(27):6355-66 [PMID: 23747008]
  93. Stem Cell Investig. 2018 Oct 10;5:33 [PMID: 30498744]
  94. J Vis Exp. 2021 Jan 23;(167): [PMID: 33554972]
  95. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  96. Lab Chip. 2021 Feb 9;21(3):458-472 [PMID: 33471007]
  97. Biomaterials. 2008 Jan;29(1):47-57 [PMID: 17915309]
  98. Stem Cell Reports. 2021 Sep 14;16(9):2058-2075 [PMID: 33836144]
  99. Nat Methods. 2017 Aug 31;14(9):849-863 [PMID: 28858338]
  100. Acta Biomater. 2009 Oct;5(8):2939-44 [PMID: 19426843]
  101. Cyborg Bionic Syst. 2021;2021: [PMID: 35795473]
  102. J Vis Exp. 2011 Jan 21;(47): [PMID: 21304466]
  103. Circ Res. 2013 Apr 26;112(9):1272-87 [PMID: 23620236]
  104. Drug Discov Today. 2016 Sep;21(9):1495-1503 [PMID: 27262402]
  105. Trends Pharmacol Sci. 2021 Feb;42(2):119-133 [PMID: 33341248]
  106. Int J Mol Sci. 2021 Aug 06;22(16): [PMID: 34445185]
  107. Tissue Eng. 2005 Jul-Aug;11(7-8):1149-58 [PMID: 16144451]
  108. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13329-13338 [PMID: 32461372]
  109. Front Pharmacol. 2021 Aug 04;12:684252 [PMID: 34421592]
  110. Dev Biol. 2018 Aug 1;440(1):22-30 [PMID: 29727635]
  111. Stem Cells. 2017 Apr;35(4):909-919 [PMID: 28248004]
  112. Biomaterials. 2022 Jan;280:121245 [PMID: 34810038]
  113. Cardiovasc Eng Technol. 2021 Jun;12(3):311-324 [PMID: 33432515]
  114. Exp Mol Med. 2018 Aug 7;50(8):1-14 [PMID: 30089861]
  115. J Mater Chem B. 2019 Sep 25;7(37):5704-5712 [PMID: 31482926]
  116. Adv Drug Deliv Rev. 2011 Apr 30;63(4-5):324-30 [PMID: 21371511]
  117. Biomaterials. 2020 Oct;256:120195 [PMID: 32623207]
  118. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3905-E3913 [PMID: 29643075]
  119. Front Cardiovasc Med. 2019 Jun 26;6:87 [PMID: 31294032]
  120. Stem Cell Res. 2015 Jul;15(1):122-129 [PMID: 26042795]
  121. Artif Organs. 2008 Sep;32(9):661-6 [PMID: 18834375]
  122. Nat Protoc. 2018 Apr;13(4):723-737 [PMID: 29543795]
  123. Expert Opin Drug Metab Toxicol. 2021 Aug;17(8):887-902 [PMID: 33612039]
  124. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129-34 [PMID: 15604141]
  125. Biofabrication. 2015 Mar 02;7(1):015013 [PMID: 25727374]
  126. JACC Basic Transl Sci. 2016 Oct;1(6):510-523 [PMID: 28580434]
  127. Lab Chip. 2018 Sep 11;18(18):2686-2709 [PMID: 30110034]
  128. Stem Cell Rev Rep. 2015 Jun;11(3):511-25 [PMID: 25190668]
  129. Biomaterials. 2015 Apr;47:1-12 [PMID: 25682155]
  130. Adv Mater. 2013 Sep 25;25(36):5011-28 [PMID: 24038336]
  131. Circ Res. 2016 Feb 19;118(4):620-36 [PMID: 26892962]
  132. Stem Cell Reports. 2013 Jul 25;1(2):105-13 [PMID: 24052946]
  133. Science. 1986 Jan 24;231(4736):397-400 [PMID: 2934816]
  134. Stem Cell Res Ther. 2010 Aug 10;1(3):26 [PMID: 20699015]
  135. J Biomed Mater Res A. 2010 Jun 15;93(4):1539-50 [PMID: 20014288]
  136. J Biomech. 1992 Mar;25(3):297-310 [PMID: 1564063]
  137. Stem Cell Reports. 2014 Nov 11;3(5):804-16 [PMID: 25418725]
  138. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 [PMID: 22645348]
  139. Circ Res. 2014 Apr 11;114(8):1328-45 [PMID: 24723658]
  140. Regen Med. 2008 Sep;3(5):633-5 [PMID: 18729786]
  141. Front Public Health. 2018 Jul 10;6:185 [PMID: 30042936]

Grants

  1. SC1 HL154511/NHLBI NIH HHS

MeSH Term

Humans
Organoids
Tissue Engineering
Endothelial Cells
Prospective Studies
Organogenesis

Word Cloud

Created with Highcharts 10.0.0cardiacorganoidorganoidscells3DmodelstissuescardiovascularCardiacstructurescomposedincluderelevantdiseasevitroformationmicrofluidicapproachesengineeringcharacterizationelectrophysiology3-dimensionaltissueniche-specificobtaineddiversesourcesencapsulatedeithernaturallyderivedsyntheticextracellularmatrixscaffoldexogenousbiochemicalsignalsessentialgrowthfactorsoverarchinggoaldevelopingestablishfunctionalintegrationcardiomyocytesphysiologicallylikecapillary-likenetworksendothelialusedmodelhumanheartanatomyphysiologypathologiespotentialsolvemanyissuesrelateddrugdiscoveryfundamentalresearchadventpatient-specifichuman-inducedpluripotentstemcell-derivedprovideuniquesingle-sourceapproachstudycomplexprocessprogressionincorporationcontrolledmicroenvironmentsdevicesStrategiesaimaccomplishfeattechnology-basedmicrophysiologicalsystemsmicrowellsmicroarray-basedplatformsbioprintedelectrospunfibermat-basedscaffoldsarticlediscussestechnology-drivenpracticesmakingcomparisonself-assembledscaffold-freemethodsgeneratediscussemergingstrategiesbio-assembledincludingmachine-learningconcludeprospectivepointsinterestEngineeringbioprintingRNA-sequencingelectrospinningin-vitromicrofluidics

Similar Articles

Cited By