The Antennal Sensilla and Expression Patterns of Olfactory Genes in the Lower Termite Reticulitermes aculabialis (Isoptera: Rhinotermitidae).

Noor Us Saba, Chenxu Ye, Wenxiu Zhang, Taoyu Wu, Yijie Wang, Xiaohan Zhang, Zhuanzhuan Song, Lianxi Xing, Xiaohong Su
Author Information
  1. Noor Us Saba: College of Life Sciences, Northwest University, Xi'an, China.
  2. Chenxu Ye: College of Life Sciences, Northwest University, Xi'an, China.
  3. Wenxiu Zhang: College of Life Sciences, Northwest University, Xi'an, China.
  4. Taoyu Wu: College of Life Sciences, Northwest University, Xi'an, China.
  5. Yijie Wang: College of Life Sciences, Northwest University, Xi'an, China.
  6. Xiaohan Zhang: College of Life Sciences, Northwest University, Xi'an, China.
  7. Zhuanzhuan Song: College of Life Sciences, Northwest University, Xi'an, China.
  8. Lianxi Xing: College of Life Sciences, Northwest University, Xi'an, China.
  9. Xiaohong Su: College of Life Sciences, Northwest University, Xi'an, China. ORCID

Abstract

The insect olfactory system plays pivotal roles in insect survival and reproduction through odor detection. Morphological and physiological adaptations are caste-specific and evolved independently in workers, soldiers, and reproductives in termites. However, it is unclear whether the olfactory system is involved in the division of labor in termite colonies. In the present study, the antennal sensilla of alates, workers, soldiers, nymphs, and larvae of the termite Reticulitermes aculabialis Tsai et Hwang ( Isoptera: Rhinotermitidae) were investigated. Transcriptomes were used to detect olfactory genes, and differential expression levels of olfactory genes were confirmed in various castes by qRT-PCR analysis. Nine types of sensilla were identified on the antennae of R. aculabialis, and soldiers possessed all 9 types. In 89,475 assembled unigenes, we found 16 olfactory genes, including 6 chemosensory protein (CSP) and 10 odorant-binding protein (OBP) genes. These OBP genes included 8 general odorant-binding protein genes (GOBPs) and 2 pheromone-binding protein-related protein (PBP) genes. Five CSP genes were more highly expressed in alates than in workers, soldiers, larvae, and nymphs, and the expression levels of CSP6 were significantly higher in nymphs. Seven GOBP and two PBP genes exhibited significantly higher expression levels in alates, and there were no significant differences in the expression levels of GOBP2 among workers, soldiers, alates, and larvae. These results suggest that alates, as primary reproductives, have unique expression patterns of olfactory genes, which play key roles in nuptial flight, mate seeking, and new colony foundation.

Keywords

References

  1. Micron. 2020 Feb;129:102777 [PMID: 31811977]
  2. Biol Rev Camb Philos Soc. 2008 Aug;83(3):295-313 [PMID: 18979593]
  3. Insect Biochem Mol Biol. 1999 Jun;29(6):481-514 [PMID: 10406089]
  4. Arthropod Struct Dev. 2015 Nov;44(6 Pt B):630-8 [PMID: 26344723]
  5. Sci Rep. 2015 Aug 27;5:13541 [PMID: 26310137]
  6. PLoS One. 2016 Jan 13;11(1):e0146125 [PMID: 26760975]
  7. Nat Commun. 2014 May 20;5:3636 [PMID: 24845553]
  8. BMC Genomics. 2009 Dec 25;10:632 [PMID: 20034407]
  9. Chem Senses. 2005 Jan;30 Suppl 1:i291-2 [PMID: 15738163]
  10. J Econ Entomol. 2020 Dec 9;113(6):2941-2949 [PMID: 33128448]
  11. PLoS One. 2012;7(8):e42871 [PMID: 22900060]
  12. Insects. 2019 Mar 28;10(4): [PMID: 30925753]
  13. Nat Commun. 2012;3:1047 [PMID: 22948829]
  14. Bull Entomol Res. 2012 Oct;102(5):600-9 [PMID: 22475511]
  15. PLoS One. 2018 Oct 11;13(10):e0205604 [PMID: 30308058]
  16. Dev Genes Evol. 2007 Mar;217(3):189-96 [PMID: 17216269]
  17. Annu Rev Entomol. 2006;51:113-35 [PMID: 16332206]
  18. BMC Genomics. 2013 Apr 24;14:279 [PMID: 23617896]
  19. Insect Mol Biol. 2008 Apr;17(2):147-63 [PMID: 18353104]
  20. PLoS Genet. 2011 Feb 03;7(2):e1001291 [PMID: 21304893]
  21. PLoS One. 2012;7(10):e47611 [PMID: 23133516]
  22. Genome Res. 2006 Nov;16(11):1404-13 [PMID: 17065610]
  23. Sci Rep. 2017 Jan 17;7:40637 [PMID: 28094781]
  24. Curr Biol. 2015 Jun 15;25(12):1638-40 [PMID: 25959967]
  25. Front Physiol. 2014 Mar 31;5:125 [PMID: 24744736]
  26. Neotrop Entomol. 2007 Sep-Oct;36(5):721-8 [PMID: 18060298]
  27. Insect Mol Biol. 2012 Feb;21(1):41-8 [PMID: 22074189]
  28. Insect Mol Biol. 2005 Jun;14(3):289-300 [PMID: 15926898]
  29. Micron. 2017 May;96:16-28 [PMID: 28214751]
  30. Commun Biol. 2021 Sep 23;4(1):1121 [PMID: 34556782]
  31. PLoS One. 2009 Sep 30;4(9):e7235 [PMID: 19789654]
  32. BMC Genomics. 2019 Oct 15;20(1):742 [PMID: 31615402]
  33. Insect Biochem Mol Biol. 2007 Jan;37(1):19-28 [PMID: 17175443]
  34. Micron. 2021 Jan;140:102957 [PMID: 33120164]
  35. Eur J Biochem. 1995 Sep 15;232(3):706-11 [PMID: 7588707]
  36. Annu Rev Entomol. 2013;58:373-91 [PMID: 23020622]
  37. Insect Mol Biol. 2015 Apr;24(2):167-82 [PMID: 25345813]
  38. Proc Natl Acad Sci U S A. 2022 Jan 18;119(3): [PMID: 35042774]
  39. Front Physiol. 2019 Jun 11;10:714 [PMID: 31244679]
  40. BMC Genomics. 2019 Sep 9;20(1):702 [PMID: 31500567]
  41. Micron. 2019 Aug;123:102682 [PMID: 31153011]
  42. Int J Biol Sci. 2015 Jul 15;11(9):1036-48 [PMID: 26221071]
  43. PLoS One. 2014 Aug 01;9(8):e103420 [PMID: 25083706]
  44. J Chem Ecol. 2002 Sep;28(9):1887-93 [PMID: 12449514]
  45. Evol Dev. 2017 Jul;19(4-5):218-226 [PMID: 28869353]
  46. J Biol Chem. 2002 Aug 30;277(35):32094-8 [PMID: 12068017]
  47. Comp Biochem Physiol Part D Genomics Proteomics. 2019 Mar;29:211-220 [PMID: 30580104]
  48. J Chem Ecol. 2005 Nov;31(11):2731-45 [PMID: 16273438]
  49. Chem Senses. 2006 Jul;31(6):547-55 [PMID: 16679489]
  50. PLoS One. 2015 Apr 23;10(4):e0124607 [PMID: 25905711]
  51. J Insect Physiol. 2020 Aug - Sep;125:104076 [PMID: 32593653]
  52. J Insect Physiol. 2013 May;59(5):542-51 [PMID: 23524066]
  53. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5386-91 [PMID: 15784736]
  54. Int J Dev Biol. 1992 Sep;36(3):391-8 [PMID: 1445782]

Grants

  1. 31870389/National Natural Scince Foundation of China
  2. 202110697063/National Innovation and Entrepreneurship Training Program for College Students

MeSH Term

Animals
Isoptera
Larva
Reproduction
Sensilla

Word Cloud

Created with Highcharts 10.0.0genesolfactoryproteinsoldiersalatesexpressionworkerslevelstermitesensillanymphslarvaeaculabialisodorant-bindinginsectsystemrolesreproductivesantennalReticulitermesIsoptera:RhinotermitidaetypeschemosensoryCSPOBPPBPsignificantlyhigherplayspivotalsurvivalreproductionodordetectionMorphologicalphysiologicaladaptationscaste-specificevolvedindependentlytermitesHoweverunclearwhetherinvolveddivisionlaborcoloniespresentstudyTsaietHwanginvestigatedTranscriptomesuseddetectdifferentialconfirmedvariouscastesqRT-PCRanalysisNineidentifiedantennaeRpossessed989475assembledunigenesfound16including610included8generalGOBPs2pheromone-bindingprotein-relatedFivehighlyexpressedCSP6SevenGOBPtwoexhibitedsignificantdifferencesGOBP2amongresultssuggestprimaryuniquepatternsplaykeynuptialflightmateseekingnewcolonyfoundationAntennalSensillaExpressionPatternsOlfactoryGenesLowerTermitegene

Similar Articles

Cited By