Will microfluidics enable functionally integrated biohybrid robots?

Miriam Filippi, Oncay Yasa, Roger Dale Kamm, Ritu Raman, Robert K Katzschmann
Author Information
  1. Miriam Filippi: Soft Robotics Laboratory, Department of Mechanical Engineering, Eidgenossische Technische Hochschule Zurich, 8092 Zurich, Switzerland. ORCID
  2. Oncay Yasa: Soft Robotics Laboratory, Department of Mechanical Engineering, Eidgenossische Technische Hochschule Zurich, 8092 Zurich, Switzerland.
  3. Roger Dale Kamm: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID
  4. Ritu Raman: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  5. Robert K Katzschmann: Soft Robotics Laboratory, Department of Mechanical Engineering, Eidgenossische Technische Hochschule Zurich, 8092 Zurich, Switzerland. ORCID

Abstract

The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2021 Jul 20;118(29): [PMID: 34261792]
  2. J Tissue Eng. 2021 Dec 10;12:20417314211059876 [PMID: 34917332]
  3. Science. 2022 Feb 11;375(6581):639-647 [PMID: 35143298]
  4. Sci Robot. 2020 Jan 22;5(38): [PMID: 33022592]
  5. Micromachines (Basel). 2020 Sep 30;11(10): [PMID: 33007890]
  6. Lab Chip. 2009 Nov 7;9(21):3038-46 [PMID: 19823716]
  7. Nat Biotechnol. 2017 Apr 11;35(4):308-310 [PMID: 28398330]
  8. Acta Biomater. 2021 Feb;121:29-40 [PMID: 33285324]
  9. Lab Chip. 2020 Nov 7;20(21):4031-4042 [PMID: 32996969]
  10. Adv Healthc Mater. 2015 Jan 7;4(1):11-28 [PMID: 24853649]
  11. Sci Robot. 2019 Jun 26;4(31): [PMID: 33137770]
  12. Lab Chip. 2016 Oct 7;16(19):3626-30 [PMID: 27550016]
  13. Int J Artif Organs. 2016 Jan;39(1):1-15 [PMID: 26916757]
  14. Adv Mater. 2005 Dec 8;18(2):165-169 [PMID: 19759845]
  15. Annu Rev Biomed Eng. 2014 Jul 11;16:371-96 [PMID: 24905880]
  16. Curr Opin Biotechnol. 2017 Jun;45:59-68 [PMID: 28135622]
  17. Lab Chip. 2013 Jun 21;13(12):2252-67 [PMID: 23649165]
  18. Lab Chip. 2006 Mar;6(3):362-8 [PMID: 16511618]
  19. J Neurosci Methods. 2007 Mar 30;161(1):88-95 [PMID: 17141327]
  20. Nature. 2016 Aug 24;536(7617):451-5 [PMID: 27558065]
  21. Nat Mater. 2005 Feb;4(2):180-4 [PMID: 15654345]
  22. Front Bioeng Biotechnol. 2020 May 21;8:474 [PMID: 32509754]
  23. ACS Biomater Sci Eng. 2021 Sep 13;7(9):4535-4544 [PMID: 34468120]
  24. Front Neurosci. 2019 May 08;13:432 [PMID: 31133779]
  25. Anal Chem. 2001 Nov 1;73(21):5168-71 [PMID: 11721914]
  26. Small. 2014 Oct 15;10(19):3831-51 [PMID: 24895215]
  27. Molecules. 2018 Jul 18;23(7): [PMID: 30022011]
  28. Adv Mater. 2022 Jun;34(23):e2108427 [PMID: 35194852]
  29. Nat Commun. 2019 Jun 27;10(1):2826 [PMID: 31249381]
  30. Biol Cybern. 2019 Jun;113(3):201-225 [PMID: 30430234]
  31. Lab Chip. 2015 Apr 7;15(7):1634-7 [PMID: 25632887]
  32. Lab Chip. 2012 Apr 7;12(7):1224-37 [PMID: 22318426]
  33. iScience. 2020 Sep 23;23(10):101589 [PMID: 33083749]
  34. Biosystems. 2009 Feb;95(2):137-44 [PMID: 18983888]
  35. Lab Chip. 2016 Jan 7;16(1):10-34 [PMID: 26584257]
  36. Front Robot AI. 2021 Aug 17;8:720702 [PMID: 34485392]
  37. Angew Chem Int Ed Engl. 2009;48(21):3834-7 [PMID: 19378312]
  38. Science. 2018 Jan 5;359(6371):61-65 [PMID: 29302008]
  39. Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2120538119 [PMID: 36037347]
  40. Arthropod Struct Dev. 2017 Sep;46(5):723-735 [PMID: 28254451]
  41. Biomaterials. 2014 Nov;35(35):9438-46 [PMID: 25154662]
  42. Biomater Sci. 2021 Jul 13;9(14):4880-4890 [PMID: 34152350]
  43. Histol Histopathol. 2020 Apr;35(4):331-350 [PMID: 31721139]
  44. Microsyst Nanoeng. 2017 Jun 19;3:17015 [PMID: 31057862]
  45. Biosens Bioelectron. 2018 Dec 30;122:75-87 [PMID: 30243047]
  46. Biosens Bioelectron. 2006 Jan 15;21(7):1093-100 [PMID: 15961304]
  47. Adv Funct Mater. 2021 Apr 1;31(14): [PMID: 33994903]
  48. J Cell Sci. 2019 Sep 2;132(17): [PMID: 31477578]
  49. Sci Robot. 2017 Nov 29;2(12): [PMID: 33157905]
  50. Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16698-703 [PMID: 19706890]
  51. Bio Protoc. 2021 Apr 05;11(7):e3974 [PMID: 33889668]
  52. Science. 2016 Jul 8;353(6295):158-62 [PMID: 27387948]
  53. Adv Sci (Weinh). 2021 Oct;8(19):e2100798 [PMID: 34351702]
  54. Sensors (Basel). 2021 Jan 01;21(1): [PMID: 33401414]
  55. Anal Bioanal Chem. 2011 May;400(4):1041-9 [PMID: 21461988]
  56. Biomed Microdevices. 2009 Aug;11(4):827-35 [PMID: 19343497]
  57. Adv Mater. 2016 Dec;28(48):10588-10612 [PMID: 27865007]
  58. Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6685-8 [PMID: 17959486]
  59. Sci Adv. 2018 Oct 10;4(10):eaat5847 [PMID: 30324134]
  60. PeerJ. 2018 Jul 11;6:e4939 [PMID: 30018850]
  61. J Biomater Appl. 2018 Feb;32(7):853-861 [PMID: 29187019]
  62. J Pharm Sci. 2022 Jan;111(1):18-31 [PMID: 34324944]
  63. Chempluschem. 2021 Jul;86(7):1021-1036 [PMID: 34286914]
  64. Adv Mater. 2018 May;30(19):e1704847 [PMID: 29430725]
  65. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19841-19847 [PMID: 31527266]
  66. Lab Chip. 2013 Dec 21;13(24):4740-4 [PMID: 24185478]
  67. Neurosci Lett. 2009 Mar 6;452(1):42-6 [PMID: 19428999]
  68. Small. 2019 May;15(21):e1900472 [PMID: 30993841]
  69. Artif Life. 2010 Winter;16(1):89-97 [PMID: 19857142]
  70. Biomicrofluidics. 2009 Apr 21;3(2):22403 [PMID: 19693338]
  71. Microb Biotechnol. 2016 Sep;9(5):658-65 [PMID: 27468753]
  72. Adv Mater. 2019 Apr;31(17):e1805764 [PMID: 30767289]
  73. Tissue Eng Part B Rev. 2014 Apr;20(2):126-46 [PMID: 23924374]
  74. Adv Biosyst. 2020 Jun;4(6):e2000034 [PMID: 32390329]
  75. Bioinspir Biomim. 2020 Dec 16;16(2): [PMID: 33002883]
  76. J Med Signals Sens. 2017 Apr-Jun;7(2):71-79 [PMID: 28553579]
  77. Nature. 2006 Jul 27;442(7101):368-73 [PMID: 16871203]
  78. Adv Healthc Mater. 2017 Oct;6(20): [PMID: 28881469]
  79. Theranostics. 2019 Jan 31;9(5):1232-1246 [PMID: 30867827]
  80. Biomacromolecules. 2019 Oct 14;20(10):3746-3754 [PMID: 31433624]
  81. APL Bioeng. 2020 Jun 17;4(2):020401 [PMID: 32596624]
  82. Exp Mol Med. 2017 Oct 6;49(10):e384 [PMID: 28983090]
  83. Molecules. 2016 Aug 26;21(9): [PMID: 27571058]
  84. Bioinspir Biomim. 2019 Sep 06;14(6):065001 [PMID: 31412322]
  85. Sci Robot. 2018 May 30;3(18): [PMID: 33141706]
  86. Biomed Microdevices. 2012 Dec;14(6):987-98 [PMID: 22960907]
  87. Adv Healthc Mater. 2017 Jun;6(12): [PMID: 28489332]
  88. APL Bioeng. 2020 Mar 10;4(1):016107 [PMID: 32161837]
  89. Biosystems. 2007 Feb;87(2-3):215-23 [PMID: 17188804]
  90. Science. 2007 Sep 7;317(5843):1366-70 [PMID: 17823347]
  91. Lab Chip. 2016 Feb 7;16(3):599-610 [PMID: 26758922]
  92. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2649-56 [PMID: 22984156]
  93. PLoS One. 2015 Aug 26;10(8):e0134348 [PMID: 26308337]
  94. Prog Biophys Mol Biol. 2014 Aug;115(2-3):279-93 [PMID: 25175338]
  95. Bioinspir Biomim. 2013 Mar;8(1):016008 [PMID: 23385386]
  96. Front Bioeng Biotechnol. 2020 Sep 23;8:578140 [PMID: 33072729]
  97. Biomicrofluidics. 2021 Feb 03;15(1):011302 [PMID: 33564346]
  98. Nature. 2019 Aug;572(7770):516-519 [PMID: 31413364]
  99. Microsyst Nanoeng. 2021 Jan 6;7:4 [PMID: 33456784]
  100. Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118561 [PMID: 31655100]
  101. Tissue Eng Part A. 2016 Feb;22(3-4):263-71 [PMID: 26653703]
  102. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3497-502 [PMID: 26976577]
  103. Lab Chip. 2021 May 18;21(10):1897-1907 [PMID: 34008665]
  104. iScience. 2019 Sep 27;19:402-414 [PMID: 31421595]
  105. Lab Chip. 2008 May;8(5):747-54 [PMID: 18432345]

MeSH Term

Biomimetic Materials
Cells
Microfluidics
Robotics

Word Cloud

Created with Highcharts 10.0.0microfluidicsroboticsbiohybridsbiohybridwillimprovetissueenablenextfrontierledCapablerobotsrequiresustainscalearchitecturalcomplexitycoreingredient:biologicaltissuesAdvancesalreadyrevolutionizeddiseasemodelingdrugdevelopmentpositionedimpactregenerativemedicineyetapplyFusinglivingmaterialsperfusionmaturationprecisepatterningsensingprocessingcontrolelementsperspectivesuggestsfuturedevelopmentsadvancedWillfunctionallyintegratedrobots?bioactuatorssoftengineering

Similar Articles

Cited By