Partitioned usage of chromatin remodelers by nucleosome-displacing factors.

Hengye Chen, Hungyo Kharerin, Archana Dhasarathy, Michael Kladde, Lu Bai
Author Information
  1. Hengye Chen: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
  2. Hungyo Kharerin: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
  3. Archana Dhasarathy: Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58201, USA.
  4. Michael Kladde: Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
  5. Lu Bai: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address: lub15@psu.edu.

Abstract

Nucleosome-displacing-factors (NDFs) in yeast, similar to pioneer factors in higher eukaryotes, can open closed chromatin and generate nucleosome-depleted regions (NDRs). NDRs in yeast are also affected by ATP-dependent chromatin remodelers (CRs). However, how NDFs and CRs coordinate in nucleosome invasion and NDR formation is still unclear. Here, we design a high-throughput method to systematically study the interplay between NDFs and CRs. By combining an integrated synthetic oligonucleotide library with DNA methyltransferase-based, single-molecule nucleosome mapping, we measure the impact of CRs on NDRs generated by individual NDFs. We find that CRs are dispensable for nucleosome invasion by NDFs, and they function downstream of NDF binding to modulate the NDR length. A few CRs show high specificity toward certain NDFs; however, in most cases, CRs are recruited in a factor-nonspecific and NDR length-dependent manner. Overall, our study provides a framework to investigate how NDFs and CRs cooperate to regulate chromatin opening.

Keywords

References

  1. Genes Dev. 2014 Nov 15;28(22):2492-7 [PMID: 25403179]
  2. Elife. 2016 Feb 19;5: [PMID: 26895087]
  3. Elife. 2017 Mar 13;6: [PMID: 28287392]
  4. Nat Struct Mol Biol. 2019 Aug;26(8):744-754 [PMID: 31384063]
  5. Dev Cell. 2010 Apr 20;18(4):544-55 [PMID: 20412770]
  6. Methods. 2004 May;33(1):68-80 [PMID: 15039089]
  7. Mol Cell. 2008 Dec 26;32(6):878-87 [PMID: 19111667]
  8. Nat Commun. 2021 May 28;12(1):3232 [PMID: 34050140]
  9. Mol Cell. 1999 Oct;4(4):649-55 [PMID: 10549297]
  10. Nucleic Acids Res. 2012 Jan;40(Database issue):D169-79 [PMID: 22102575]
  11. Genes Dev. 2007 Apr 15;21(8):997-1004 [PMID: 17438002]
  12. Cell Rep. 2019 Jan 2;26(1):279-292.e5 [PMID: 30605682]
  13. Mol Cell Biol. 2005 Apr;25(7):2698-707 [PMID: 15767675]
  14. Genes Dev. 2002 Apr 1;16(7):806-19 [PMID: 11937489]
  15. Mol Cell. 2010 May 28;38(4):590-602 [PMID: 20513433]
  16. Genome Res. 2009 Apr;19(4):556-66 [PMID: 19158363]
  17. Eukaryot Cell. 2010 Dec;9(12):1845-55 [PMID: 20935143]
  18. Nat Struct Mol Biol. 2006 Apr;13(4):339-46 [PMID: 16518397]
  19. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  20. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  21. Nucleic Acids Res. 2019 Oct 10;47(18):9609-9618 [PMID: 31396617]
  22. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1361-5 [PMID: 8108416]
  23. Genes Dev. 2018 May 1;32(9-10):695-710 [PMID: 29785963]
  24. PLoS Comput Biol. 2021 Jan 11;17(1):e1008560 [PMID: 33428627]
  25. Mol Endocrinol. 2014 Jul;28(7):989-98 [PMID: 24825399]
  26. Mol Cell Biol. 2011 Feb;31(4):662-73 [PMID: 21135121]
  27. Blood. 2003 Mar 1;101(5):2074 [PMID: 12584148]
  28. Mol Cell Biol. 2001 Oct;21(19):6450-60 [PMID: 11533234]
  29. EMBO J. 2008 Jan 9;27(1):100-10 [PMID: 18059476]
  30. PLoS Genet. 2013 May;9(5):e1003479 [PMID: 23658529]
  31. Cell. 2016 Oct 20;167(3):709-721.e12 [PMID: 27768892]
  32. Mol Cell. 2018 Jul 5;71(1):89-102.e5 [PMID: 29979971]
  33. Mol Cell. 2007 Aug 3;27(3):380-92 [PMID: 17679089]
  34. Mol Cell. 2006 Nov 17;24(4):559-68 [PMID: 17188033]
  35. Mol Cell. 2019 Jan 17;73(2):238-249.e3 [PMID: 30554944]
  36. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3090-3 [PMID: 16492771]
  37. Mol Cell. 2003 Feb;11(2):391-403 [PMID: 12620227]
  38. Nature. 2002 Jan 10;415(6868):141-7 [PMID: 11805826]
  39. Nature. 2021 Apr;592(7853):309-314 [PMID: 33692541]
  40. Genome Res. 2019 Jun;29(6):988-998 [PMID: 31097474]
  41. Nat Struct Mol Biol. 2006 Mar;13(3):256-63 [PMID: 16491089]
  42. Elife. 2019 Mar 19;8: [PMID: 30888317]
  43. Nature. 2019 Mar;567(7748):409-413 [PMID: 30867599]
  44. Nat Struct Mol Biol. 2018 Sep;25(9):823-832 [PMID: 30177756]
  45. Science. 2016 Sep 23;353(6306): [PMID: 27708008]
  46. Mol Syst Biol. 2010 Oct 5;6:420 [PMID: 20959818]
  47. Cell. 2012 Jun 22;149(7):1461-73 [PMID: 22726434]
  48. Mol Cell Biol. 2011 Oct;31(20):4165-75 [PMID: 21859889]
  49. Nucleic Acids Res. 1998 Sep 1;26(17):3961-6 [PMID: 9705505]
  50. Nat Genet. 2019 Sep;51(9):1399-1410 [PMID: 31427792]
  51. Elife. 2021 Feb 12;10: [PMID: 33576335]
  52. Biochem Biophys Res Commun. 2008 Sep 5;373(4):602-6 [PMID: 18593569]
  53. EMBO J. 1996 Nov 15;15(22):6290-300 [PMID: 8947052]
  54. Genome Res. 2016 Feb;26(2):211-25 [PMID: 26602697]
  55. Nucleic Acids Res. 2014 Feb;42(4):2245-56 [PMID: 24288367]
  56. Cell. 2000 Oct 27;103(3):423-33 [PMID: 11081629]
  57. Genes Dev. 2011 Nov 1;25(21):2227-41 [PMID: 22056668]
  58. Cell. 1996 Dec 27;87(7):1249-60 [PMID: 8980231]
  59. Mol Cell. 2011 May 20;42(4):465-76 [PMID: 21596311]
  60. Genes Dev. 2014 Dec 15;28(24):2679-92 [PMID: 25512556]
  61. Nature. 2020 Mar;579(7799):448-451 [PMID: 32188943]
  62. Mol Cell. 2019 Sep 5;75(5):921-932.e6 [PMID: 31303471]
  63. Elife. 2017 Oct 02;6: [PMID: 28967863]
  64. Nature. 2018 Apr;556(7701):386-390 [PMID: 29643509]
  65. Cell. 2009 May 1;137(3):445-58 [PMID: 19410542]
  66. EMBO J. 2004 Jun 2;23(11):2246-57 [PMID: 15116071]
  67. Nature. 2007 Apr 12;446(7137):806-10 [PMID: 17314980]

Grants

  1. R35 GM139654/NIGMS NIH HHS

MeSH Term

Chromatin
Chromatin Assembly and Disassembly
Nucleosomes
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

Chromatin
Nucleosomes
Saccharomyces cerevisiae Proteins

Word Cloud

Created with Highcharts 10.0.0CRsNDFschromatinnucleosomeNDRsinvasionNDRfactoryeastpioneerfactorsnucleosome-depletedregionsremodelersstudysyntheticoligonucleotidelibrarybindingspecificityopeningnucleosome-displacingNucleosome-displacing-factorssimilarhighereukaryotescanopenclosedgeneratealsoaffectedATP-dependentHowevercoordinateformationstilluncleardesignhigh-throughputmethodsystematicallyinterplaycombiningintegratedDNAmethyltransferase-basedsingle-moleculemappingmeasureimpactgeneratedindividualfinddispensablefunctiondownstreamNDFmodulatelengthshowhightoward certainhowevercasesrecruitedfactor-nonspecificlength-dependentmannerOverallprovidesframeworkinvestigatecooperateregulatePartitionedusageCP:Molecularbiologyremodelerpositioningremodelingtranscription

Similar Articles

Cited By