The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence.

Gang Wang, Jean-Michel Brunel, Matthias Preusse, Negar Mozaheb, Sven D Willger, Gerald Larrouy-Maumus, Pieter Baatsen, Susanne Häussler, Jean-Michel Bolla, Françoise Van Bambeke
Author Information
  1. Gang Wang: Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
  2. Jean-Michel Brunel: Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France. ORCID
  3. Matthias Preusse: Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany. ORCID
  4. Negar Mozaheb: Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium. ORCID
  5. Sven D Willger: Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany. ORCID
  6. Gerald Larrouy-Maumus: Department of Life Sciences, Faculty of Natural Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom.
  7. Pieter Baatsen: Electron Microscopy Platform & Bio Imaging Core, VIB & KULeuven Center for Brain & Disease Research, KULeuven, Leuven, Belgium.
  8. Susanne Häussler: Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany. ORCID
  9. Jean-Michel Bolla: Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France. ORCID
  10. Françoise Van Bambeke: Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium. francoise.vanbambeke@uclouvain.be. ORCID

Abstract

Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716.

References

  1. Antimicrob Agents Chemother. 1986 Mar;29(3):496-500 [PMID: 3013085]
  2. Nat Methods. 2015 Apr;12(4):323-5 [PMID: 25730492]
  3. Antimicrob Agents Chemother. 1989 Jan;33(1):27-9 [PMID: 2540707]
  4. J Antimicrob Chemother. 2003 Jul;52(1):1 [PMID: 12805255]
  5. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  6. Antimicrob Agents Chemother. 2021 Feb 17;65(3): [PMID: 33318000]
  7. Antimicrob Agents Chemother. 2001 Jan;45(1):105-16 [PMID: 11120952]
  8. Sci Rep. 2020 Jun 4;10(1):9117 [PMID: 32499514]
  9. Microbiologyopen. 2020 Mar;9(3):e991 [PMID: 31961499]
  10. J Bacteriol. 2007 Nov;189(21):7600-9 [PMID: 17720796]
  11. Pharmaceuticals (Basel). 2013 Aug 21;6(8):1055-81 [PMID: 24276381]
  12. J Mol Microbiol Biotechnol. 2001 Apr;3(2):255-64 [PMID: 11321581]
  13. J Ethnopharmacol. 2008 Nov 20;120(2):272-6 [PMID: 18835348]
  14. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  15. Am J Transl Res. 2019 Jul 15;11(7):3919-3931 [PMID: 31396309]
  16. Nature. 1964 Jul 18;203:257-8 [PMID: 14201758]
  17. J Med Chem. 2010 Mar 11;53(5):1898-916 [PMID: 19874036]
  18. Front Microbiol. 2019 Aug 13;10:1771 [PMID: 31456758]
  19. J Antimicrob Chemother. 2020 Dec 1;75(12):3534-3543 [PMID: 32911540]
  20. J Pept Sci. 2019 Nov;25(11):e3210 [PMID: 31637796]
  21. Biochim Biophys Acta Biomembr. 2019 Oct 1;1861(10):182998 [PMID: 31153908]
  22. J Antimicrob Chemother. 1996 Jul;38(1):133-7 [PMID: 8858465]
  23. Nat Med. 2019 Dec;25(12):1858-1864 [PMID: 31768064]
  24. J Antimicrob Chemother. 2010 Aug;65(8):1688-93 [PMID: 20551217]
  25. Antimicrob Agents Chemother. 1997 Nov;41(11):2540-3 [PMID: 9371363]
  26. Sci Rep. 2019 May 8;9(1):7063 [PMID: 31068610]
  27. Mol Pharmacol. 2002 Nov;62(5):1036-42 [PMID: 12391265]
  28. Antimicrob Agents Chemother. 2014 Aug;58(8):4420-30 [PMID: 24867965]
  29. J Biol Chem. 1997 Aug 29;272(35):21964-9 [PMID: 9268332]
  30. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44 [PMID: 14617778]
  31. Genome Biol. 2014;15(11):524 [PMID: 25410596]
  32. J Biol Chem. 2016 Jun 24;291(26):13864-74 [PMID: 27189936]
  33. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  34. J Med Chem. 2019 Oct 10;62(19):8665-8681 [PMID: 31063379]
  35. ACS Infect Dis. 2018 Nov 9;4(11):1546-1552 [PMID: 30226750]
  36. mBio. 2020 Sep 22;11(5): [PMID: 32963002]
  37. Crit Care. 2012 Jul 26;16(4):R136 [PMID: 22835221]
  38. J Antimicrob Chemother. 2009 Apr;63(4):668-74 [PMID: 19240073]
  39. Emerg Infect Dis. 2002 Sep;8(9):881-90 [PMID: 12194761]
  40. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  41. Antimicrob Agents Chemother. 2007 Jul;51(7):2546-51 [PMID: 17452486]
  42. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  43. mBio. 2022 Jun 28;13(3):e0224021 [PMID: 35435702]
  44. Antimicrob Agents Chemother. 2020 Mar 24;64(4): [PMID: 32015047]
  45. Antimicrob Agents Chemother. 2013 Feb;57(2):996-1005 [PMID: 23254430]
  46. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  47. ACS Omega. 2018 Dec 31;3(12):17828-17834 [PMID: 30613815]
  48. Antimicrob Agents Chemother. 2005 Aug;49(8):3222-7 [PMID: 16048929]
  49. J Appl Bacteriol. 1989 Mar;66(3):253-8 [PMID: 2663802]
  50. Front Microbiol. 2014 Nov 26;5:643 [PMID: 25505462]
  51. Antimicrob Agents Chemother. 1989 Sep;33(9):1428-34 [PMID: 2554795]
  52. Acc Chem Res. 2021 Feb 16;54(4):930-939 [PMID: 33539084]
  53. PLoS One. 2016 May 06;11(5):e0154490 [PMID: 27152508]
  54. Antimicrob Agents Chemother. 1984 Oct;26(4):546-51 [PMID: 6440475]
  55. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  56. Antimicrob Agents Chemother. 2013 Jan;57(1):110-9 [PMID: 23070157]
  57. Front Cell Infect Microbiol. 2017 Feb 15;7:39 [PMID: 28261568]
  58. Eur J Med Chem. 2018 Sep 5;157:1512-1525 [PMID: 30282323]
  59. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  60. Microbiol Mol Biol Rev. 2001 Jun;65(2):232-60 ; second page, table of contents [PMID: 11381101]
  61. Antimicrob Agents Chemother. 2014 Nov;58(11):6385-97 [PMID: 25114142]
  62. J Antimicrob Chemother. 1999 Jun;43 Suppl C:55-9 [PMID: 10404339]
  63. J Antibiot (Tokyo). 1995 Jan;48(1):67-72 [PMID: 7868392]
  64. J Antimicrob Chemother. 2008 Oct;62(4):730-7 [PMID: 18635521]
  65. Front Microbiol. 2018 Feb 08;9:129 [PMID: 29472905]
  66. NeuroRx. 2005 Oct;2(4):541-53 [PMID: 16489364]
  67. Biophys J. 2018 Feb 27;114(4):919-928 [PMID: 29490251]
  68. Bioorg Med Chem. 2013 Mar 1;21(5):1174-9 [PMID: 23352753]
  69. J Antimicrob Chemother. 2007 Jun;59(6):1223-9 [PMID: 17229832]
  70. Environ Microbiol. 2022 Jun;24(6):2630-2656 [PMID: 34559444]
  71. J Med Chem. 2020 Sep 24;63(18):10496-10508 [PMID: 32840108]
  72. J Med Chem. 2017 May 11;60(9):3684-3702 [PMID: 28409644]
  73. Nat Commun. 2020 Jun 23;11(1):3184 [PMID: 32576824]

MeSH Term

Anti-Bacterial Agents
Biofilms
Lipopolysaccharides
Pseudomonas aeruginosa
Quorum Sensing

Chemicals

Anti-Bacterial Agents
Lipopolysaccharides

Word Cloud

Created with Highcharts 10.0.0antibioticsNV716aeruginosamembranePseudomonasouterpolyaminoisoprenylcompoundconcentrationsre-sensitizesPLPSalsoresistanceactivityshowsgenesreducesvirulenceintrinsicallyresistantmanydueimpermeabilityconstitutiveexpressioneffluxpumpsshowsub-MICabandonedbindinglipopolysaccharidespermeabilizingincreasingantibioticaccumulationinsidebacteriapreventsselectionincreasesbiofilmsstableselectedNV716-itselfserialpassagessubinhibitorytranscriptomeresultingdaughtercellsupregulationinvolvedsynthesislipiddownregulationquorumsensing-relatedAccordinglymotilityfactorsproductionbiofilmformationuniquehighlypromisingprofileusedalonecombinationcombiningsinglemoleculeanti-virulencepotentiatoreffectsAdditionalworkrequiredthoroughlyunderstandvariousfunctionsmembrane-activebacterial

Similar Articles

Cited By (9)