Open microscopy in the life sciences: quo vadis?

Johannes Hohlbein, Benedict Diederich, Barbora Marsikova, Emmanuel G Reynaud, Séamus Holden, Wiebke Jahr, Robert Haase, Kirti Prakash
Author Information
  1. Johannes Hohlbein: Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands. johannes.hohlbein@wur.nl. ORCID
  2. Benedict Diederich: Leibniz Institute for Photonic Technology, Jena, Germany.
  3. Barbora Marsikova: Leibniz Institute for Photonic Technology, Jena, Germany. ORCID
  4. Emmanuel G Reynaud: School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland. ORCID
  5. Séamus Holden: School of Life Sciences, The University of Warwick, Coventry, UK.
  6. Wiebke Jahr: In-Vision Technologies AG, Guntramsdorf, Austria. ORCID
  7. Robert Haase: DFG Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany. ORCID
  8. Kirti Prakash: National Physical Laboratory, Teddington, UK. ORCID

Abstract

No abstract text available.

References

  1. UNESCO Recommendation on Open Science (UNESCO, 2021); https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en
  2. Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016). [PMID: 26978244]
  3. Open Science (Foster, accessed 16 August 2022); https://www.fosteropenscience.eu/taxonomy/term/7
  4. Cybulski, J. S., Clements, J. & Prakash, M. PLoS ONE 9, e98781 (2014). [PMID: 24940755]
  5. Naqvi, A. et al. BMC Womens Health 20, 60 (2020). [PMID: 32213171]
  6. Eisenstein, M. Nat. Methods 18, 1277–1281 (2021). [PMID: 34732906]
  7. Diekmann, R. et al. Sci. Rep. 7, 14425 (2017). [PMID: 29089524]
  8. Li, H. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.12.28.424613 (2020).
  9. Schröder, D., Deschamps, J., Dasgupta, A., Matti, U. & Ries, J. Biomed. Opt. Express 11, 609–623 (2020). [PMID: 32206389]
  10. Nicovich, P. R., Walsh, J., Böcking, T. & Gaus, K. PLoS ONE 12, e0173879 (2017). [PMID: 28301563]
  11. Open Hardware: a key for accelerating science and technology towards the UN sustainable development goals (SDGs) (GOSH, 2021); https://openhardware.science/2021/09/02/open-hardware-a-key-for-accelerating-science-and-technology-towards-the-u-n-sustainable-development-goals-sdgs/
  12. Chagas, A. M. PLoS Biol. 16, e3000014 (2018). [DOI: 10.1371/journal.pbio.3000014]
  13. Levet, F. et al. F1000 Res. https://doi.org/10.12688/f1000research.52531.1 (2021).
  14. Open Science Collaboration. Science 349, aaac4716 (2015).
  15. Baker, M. Nature 533, 452–454 (2016). [PMID: 27225100]
  16. CERN Open Hardware Licence (Open Hardware Repository, accessed 16 August 2022); https://ohwr.org/project/cernohl
  17. The MIT License (Open Source Initiative, accessed 16 August 2022); https://opensource.org/licenses/MIT
  18. The GNU General Public License v3.0 (GNU, accessed 16 August 2022); https://www.gnu.org/licenses/gpl-3.0.en.html
  19. About the Licenses (Creative Commons, accessed 16 August 2022); https://creativecommons.org/licenses/
  20. Patents and academic research. Labrigger (2018); https://labrigger.com/blog/2018/04/18/patents-and-academic-research/
  21. Chagas, A. M., Prieto-Godino, L. L., Arrenberg, A. B. & Baden, T. PLoS Biol. 15, e2002702 (2017). [DOI: 10.1371/journal.pbio.2002702]
  22. Collins, J. T. et al. Biomed. Opt. Express 11, 2447–2460 (2020). [PMID: 32499936]
  23. Diederich, B. et al. Nat. Commun. 11, 5979 (2020). [PMID: 33239615]
  24. Delmans, M. & Haseloff, J. J. Open Hardw. 2, 2 (2018). [DOI: 10.5334/joh.8]
  25. Li, H., Soto-Montoya, H., Voisin, M., Valenzuela, L. F. & Prakash, M. Preprint at. bioRxiv https://doi.org/10.1101/684423 (2019).
  26. Rosario, M. D., Heil, H. S., Mendes, A., Saggiomo, V. & Henriques, R. Adv. Biol. 6, 2100994 (2022). [DOI: 10.1002/adbi.202100994]
  27. Pitrone, P. G. et al. Nat. Methods 10, 598–599 (2013). [PMID: 23749304]
  28. Voigt, F. F. et al. Nat. Methods 16, 1105–1108 (2019). [PMID: 31527839]
  29. Weiss, K. R., Voigt, F. F., Shepherd, D. P. & Huisken, J. Nat. Protoc. 16, 2732–2748 (2021). [PMID: 34021294]
  30. Kumar, M., Kishore, S., McLean, D. & Kozorovitskiy, Y. Preprint at bioRxiv https://doi.org/10.1101/2021.04.30.442190 (2021).
  31. WOSM (WOSM, accessed 16 August 2022); https://wosmic.org/
  32. Auer, A. et al. ChemPhysChem 19, 3024–3034 (2018). [PMID: 30207624]
  33. Martens, K. J. A. et al. Nat. Commun. 10, 3553 (2019). [DOI: 10.1038/s41467-019-11514-0]
  34. Prakash, K. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 379, 20200144 (2021).
  35. Katunin, P. et al. Front. Cell Dev. Biol. 9, 2507 (2021). [DOI: 10.3389/fcell.2021.697584]
  36. Ambrose, B. et al. Nat. Commun. 11, 5641 (2020). [PMID: 33159061]
  37. Brown, J. W. P. et al. Nat. Commun. 10, 5662 (2019). [PMID: 31827096]
  38. Rosenegger, D. G., Tran, C. H. T., LeDue, J., Zhou, N. & Gordon, G. R. PLoS ONE 9, e110475 (2014). [PMID: 25333934]
  39. Markwirth, A. et al. Nat. Commun. 10, 4315 (2019). [PMID: 31541134]
  40. Sandmeyer, A. et al. ACS Photonics 8, 1639–1648 (2021). [DOI: 10.1021/acsphotonics.0c01937]
  41. Pinkard, H. et al. Nat. Methods 18, 226–228 (2021). [PMID: 33674797]
  42. Barentine, A. E. S. et al. Preprint at bioRxiv https://doi.org/10.1101/606954 (2022).
  43. Pinto, D. M. S. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.427171 (2021).
  44. Moreno, X. C., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. J. Open Source Softw. 6, 3394 (2021). [DOI: 10.21105/joss.03394]
  45. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. Nat. Methods 9, 671–675 (2012). [PMID: 22930834]
  46. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012). [PMID: 22743772]
  47. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010); https://doi.org/10.1002/0471142727.mb1420s92
  48. Swedlow, J. R. in Imaging Cellular and Molecular Biological Functions (eds Shorte, S. L. & Frischknecht, F.) 71–92 (Springer, 2007).
  49. Weigert, M. et al. Nat. Methods 15, 1090–1097 (2018). [PMID: 30478326]
  50. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV) 3636–3673(2020); https://doi.org/10.1109/WACV45572.2020.9093435
  51. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Nat. Methods 18, 100–106 (2021). [PMID: 33318659]
  52. Bankhead, P. et al. Sci. Rep. 7, 16878 (2017). [PMID: 29203879]
  53. von Chamier, L. et al. Nat. Commun. 12, 2276 (2021). [DOI: 10.1038/s41467-021-22518-0]
  54. Belthangady, C. & Royer, L. A. Nat. Methods 16, 1215–1225 (2019). [PMID: 31285623]
  55. Laine, R. F., Arganda-Carreras, I., Henriques, R. & Jacquemet, G. Nat. Methods 18, 1136–1144 (2021). [PMID: 34608322]
  56. Sage, D. et al. Nat. Methods 16, 387–395 (2019). [PMID: 30962624]
  57. Bonvoisin, J., Molloy, J., Häuer, M. & Wenzel, T. J. Open Hardw. 4, 2 (2020). [DOI: 10.5334/joh.22]
  58. Huisman, M. et al. Preprint at https://doi.org/10.48550/arXiv.1910.11370 (2021).
  59. Nelson, G. et al. J. Microsc. 284, 56–73 (2021). [PMID: 34214188]
  60. Heil, B. J. et al. Nat. Methods 18, 1132–1135 (2021). [PMID: 34462593]
  61. Boehm, U. et al. Nat. Methods 18, 1423–1426 (2021). [PMID: 34021279]
  62. Diederich, B. et al. Nat. Methods https://doi.org/10.1038/s41592-022-01484-5 (2022). [DOI: 10.1038/s41592-022-01484-5]
  63. Marin, Z. et al. Nat. Methods 18, 582–584 (2021). [PMID: 34002092]
  64. McDole, K. et al. Cell 175, 859–876.e33 (2018). [PMID: 30318151]
  65. Ouyang, W. et al. Adv. Biol. 6, 2101063 (2022). [DOI: 10.1002/adbi.202101063]
  66. Pearce, J. M. J. Open Hardw. 1, 2 (2017). [DOI: 10.5334/joh.4]
  67. openFrame (Imperial College London, accessed 16 August 2022); http://www.imperial.ac.uk/a-z-research/photonics/research/biophotonics/instruments--software/fluorescence-microscopy/openframe/
  68. Perkel, J. M. Nature 600, 347–348 (2021). [PMID: 34873333]

Grants

  1. 206670/Z/17/Z/Wellcome Trust

MeSH Term

Biological Science Disciplines
Microscopy

Word Cloud

Created with Highcharts 10.0.0Openmicroscopylifesciences:quovadis?

Similar Articles

Cited By