Identification, Superantigen Toxin Gene Profile and Antimicrobial Resistance of Staphylococci Isolated from Polish Primitive Sheep Breeds.

Jolanta Karakulska, Marta Woroszyło, Małgorzata Szewczuk, Karol Fijałkowski
Author Information
  1. Jolanta Karakulska: Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
  2. Marta Woroszyło: Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
  3. Małgorzata Szewczuk: Department of Ruminant Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270 Szczecin, Poland.
  4. Karol Fijałkowski: Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland. ORCID

Abstract

The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research included the identification of staphylococcal species, evaluation of the prevalence of genes encoding enterotoxins, staphylococcal enterotoxin-like proteins, exfoliative toxins, toxic shock syndrome toxin 1, and detection of antimicrobial resistance. From 61 swab samples gathered from Świniarka (33) and Wrzosówka (28) healthy sheep, 127 coagulase-negative staphylococci (CoNS) were isolated. Based on PCR-RFLP analysis of the gene using I and CH4V enzymes, the isolates were identified as: (33.9%), (29.1%), (15%), (9.4%), (7.9%), (3.9%) and (0.8%). Three of these species, , and , were detected only from the Świniarka breed. It was found that 77.2% of isolates harbored from 1 to 7 out of 21 analyzed genes for superantigenic toxins. The greatest diversity of toxin genes was recorded for (16 different genes). The most prevalent gene was (40.2%). The incidence and number of resistances to antimicrobials were found to be bacterial species but not sheep breed dependent. The highest percentage of resistance was found for . The most frequent resistance was observed to clindamycin (45.7%). The findings of this study prove that toxigenic and antimicrobial resistant CoNS can colonize the nasal cavity of healthy sheep.

Keywords

References

  1. Vet Microbiol. 2011 Feb 24;148(1):45-50 [PMID: 20817422]
  2. Infect Immun. 2002 Feb;70(2):631-41 [PMID: 11796592]
  3. Anim Health Res Rev. 2020 Jun;21(1):3-14 [PMID: 31918781]
  4. Vet Microbiol. 2007 Apr 15;121(3-4):307-15 [PMID: 17270365]
  5. J Dairy Sci. 2020 Jan;103(1):890-897 [PMID: 31733855]
  6. J Clin Microbiol. 2007 Aug;45(8):2669-80 [PMID: 17537946]
  7. FEMS Microbiol Ecol. 2014 Apr;88(1):48-59 [PMID: 24308503]
  8. Lett Appl Microbiol. 2014 Jun;58(6):527-34 [PMID: 24460961]
  9. Vet Sci. 2020 Nov 30;7(4): [PMID: 33266079]
  10. Microorganisms. 2021 Apr 14;9(4): [PMID: 33919781]
  11. Rev Esp Quimioter. 2014 Jun;27(2):106-9 [PMID: 24940891]
  12. J Food Prot. 2014 Jun;77(6):993-8 [PMID: 24853524]
  13. Antimicrob Agents Chemother. 2001 Dec;45(12):3504-8 [PMID: 11709331]
  14. J Wildl Dis. 1994 Jan;30(1):1-7 [PMID: 8151809]
  15. Nat Rev Microbiol. 2022 May;20(5):257-269 [PMID: 34737424]
  16. Jundishapur J Microbiol. 2015 Oct 12;8(10):e22413 [PMID: 26568802]
  17. J Clin Microbiol. 2000 Dec;38(12):4351-5 [PMID: 11101563]
  18. Microb Drug Resist. 2020 Aug;26(8):951-970 [PMID: 32043916]
  19. J Med Microbiol. 2011 Jan;60(Pt 1):35-45 [PMID: 20829395]
  20. Microbiol Spectr. 2018 Jul;6(4): [PMID: 29992898]
  21. Dis Mon. 2008 Dec;54(12):793-800 [PMID: 18996282]
  22. Sci Rep. 2020 Jun 16;10(1):9754 [PMID: 32546711]
  23. FEMS Microbiol Lett. 1998 Nov 15;168(2):227-33 [PMID: 9835033]
  24. J Antimicrob Chemother. 2004 Aug;54(2):311-20 [PMID: 15215223]
  25. Animals (Basel). 2022 Jun 09;12(12): [PMID: 35739847]
  26. Res Vet Sci. 1997 Sep-Oct;63(2):189-90 [PMID: 9429256]
  27. Int J Food Microbiol. 2022 Jan 16;361:109461 [PMID: 34742144]
  28. Vet Microbiol. 2005 Dec 20;111(3-4):237-40 [PMID: 16289541]
  29. Vet Microbiol. 2009 Feb 16;134(1-2):29-36 [PMID: 18977615]
  30. J Appl Microbiol. 2012 Nov;113(5):1027-36 [PMID: 22816491]
  31. Int J Food Microbiol. 2016 Dec 5;238:113-120 [PMID: 27614422]
  32. Antimicrob Resist Infect Control. 2019 Jul 15;8:117 [PMID: 31346458]
  33. J Antimicrob Chemother. 2012 Dec;67(12):2804-8 [PMID: 22899804]
  34. Vet World. 2022 Apr;15(4):1141-1148 [PMID: 35698509]
  35. J Appl Microbiol. 2020 Jan;128(1):280-291 [PMID: 31563150]
  36. Vet Microbiol. 2005 Apr 10;106(3-4):235-9 [PMID: 15778029]
  37. Vet Microbiol. 2011 Jan 10;147(1-2):149-54 [PMID: 20667668]
  38. Vet Microbiol. 2012 May 4;156(3-4):367-73 [PMID: 22176760]
  39. Lancet. 2001 Apr 21;357(9264):1225-40 [PMID: 11418146]
  40. J Microbiol. 2014 May;52(5):366-72 [PMID: 24723103]
  41. Vector Borne Zoonotic Dis. 2020 Dec;20(12):897-902 [PMID: 32857680]
  42. Ambio. 2016 Sep;45(5):551-66 [PMID: 26932602]
  43. Indian J Med Microbiol. 2010 Apr-Jun;28(2):124-6 [PMID: 20404457]
  44. Antibiotics (Basel). 2021 Nov 17;10(11): [PMID: 34827344]
  45. Genes (Basel). 2020 Apr 30;11(5): [PMID: 32365888]
  46. Trop Anim Health Prod. 2018 Oct;50(7):1493-1497 [PMID: 29656341]
  47. J Microbiol. 2012 Jun;50(3):444-51 [PMID: 22752908]
  48. Sci Total Environ. 2022 Jul 1;828:154446 [PMID: 35283119]
  49. J Antimicrob Chemother. 2017 Jul 1;72(7):1886-1892 [PMID: 28333320]
  50. J Dairy Sci. 2017 Mar;100(3):2184-2195 [PMID: 28109594]
  51. Br J Biomed Sci. 2005;62(2):98-105 [PMID: 15997888]
  52. J Appl Microbiol. 2011 Sep;111(3):749-62 [PMID: 21672099]
  53. J Antimicrob Chemother. 2012 Feb;67(2):503-4 [PMID: 22013012]
  54. J Clin Microbiol. 1991 Oct;29(10):2240-4 [PMID: 1939577]
  55. J Dairy Res. 2019 Aug;86(3):254-266 [PMID: 31423957]

Word Cloud

Created with Highcharts 10.0.0sheepgenestoxinresistancestaphylococcalŚwiniarkaspecies1antimicrobialgene9%breedfoundstudynasalcavityprimitivePolishWrzosówkaexfoliativetoxinstoxicshocksyndrome33healthystaphylococciCoNSisolates72%enzymeaimedanalyzemicrobiotabreedskeptecologicalfarmresearchincludedidentificationevaluationprevalenceencodingenterotoxinsenterotoxin-likeproteinsdetection61swabsamplesgathered28127coagulase-negativeisolatedBasedPCR-RFLPanalysisusingCH4Venzymesidentifiedas:291%15%94%308%Threedetected77harbored21analyzedsuperantigenicgreatestdiversityrecorded16differentprevalent40incidencenumberresistancesantimicrobialsbacterialdependenthighestpercentagefrequentobservedclindamycin457%findingsprovetoxigenicresistantcancolonizeIdentificationSuperantigenToxinGeneProfileAntimicrobialResistanceStaphylococciIsolatedPrimitiveSheepBreedsAluIHpyCH4Venterotoxingap

Similar Articles

Cited By