New PCL/PEC Blends: In Vitro Cell Response of Preosteoblasts and Human Mesenchymal Stem Cells.

Jesus L Pablos, Mónica Cicuéndez, María Hernández-Rivas, Fernando Catalina, María Vallet-Regí, Teresa Corrales
Author Information
  1. Jesus L Pablos: Departamento de Química Macromolecular Aplicada, Grupo de Fotoquímica, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain. ORCID
  2. Mónica Cicuéndez: Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, 28040 Madrid, Spain.
  3. María Hernández-Rivas: Departamento de Química Macromolecular Aplicada, Grupo de Fotoquímica, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain.
  4. Fernando Catalina: Departamento de Química Macromolecular Aplicada, Grupo de Fotoquímica, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain. ORCID
  5. María Vallet-Regí: Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, 28040 Madrid, Spain. ORCID
  6. Teresa Corrales: Departamento de Química Macromolecular Aplicada, Grupo de Fotoquímica, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C., Juan de la Cierva 3, 28006 Madrid, Spain. ORCID

Abstract

In this study, new blends of PCL/PEC have been prepared in an easy manner by casting with the objective of obtaining new biomaterials to apply to tissue engineering and bone regeneration. The PCL/PEC blends obtained, together with neat polymer blends, were characterized by infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This full characterization is the key to disentangle the miscibility, which means good compatibility, of the polymer blends used in this work. The addition of increasing amounts of PEC, has shown in the new biomaterials obtained, a remarkable improvement in relation with the mechanical properties (manageable materials) and above all, in terms of an increase in their hydrophilic character with respect to the PCL neat polymer. The improvement of all these properties is reflected in their biological properties. With these thoughts in mind, the blends obtained were tested through the assessment of several biological parameters such as cell viability, proliferation, and differentiation of both the MC3T3-E1 osteoblastic cell line and hMSCs to evaluate their cell response to different polymer membranes aimed at bone tissue regeneration. "In vitro" biocompatibility methods have been chosen rather than in vivo studies due to their lower cost, faster procedure time, and minimum ethical concerns, and because it was the first time that the biological effects of these blends were studied. The results show that the PCL/PEC blends obtained, with tunable properties in terms of hydrophilic character and hydrolytic degradation, may be regarded as good candidates to perform "in vivo" tests and check their real-life applicability for bone regeneration. The polymer acronym (the weight percentage in the sub index) is PCLx/PECy as noted in table one with the summary of compositions.

Keywords

References

  1. J Biomed Mater Res A. 2006 Mar 15;76(4):788-97 [PMID: 16345086]
  2. Bioact Mater. 2016 Dec;1(2):93-108 [PMID: 28653043]
  3. J Biomed Mater Res. 1999 Dec 5;47(3):324-35 [PMID: 10487883]
  4. Biomaterials. 2002 Mar;23(6):1519-26 [PMID: 11829448]
  5. Biomaterials. 2000 Apr;21(7):667-81 [PMID: 10711964]
  6. J Cell Physiol. 2009 Dec;221(3):740-9 [PMID: 19725053]
  7. Materials (Basel). 2022 Mar 21;15(6): [PMID: 35329775]
  8. J Mater Sci Mater Med. 2011 Jan;22(1):11-8 [PMID: 21072569]
  9. Endocr Rev. 1993 Aug;14(4):424-42 [PMID: 8223340]
  10. Acta Ophthalmol. 2013 Feb;91(1):66-70 [PMID: 22035345]
  11. Mater Sci Eng C Mater Biol Appl. 2015 May;50:74-84 [PMID: 25746248]
  12. Acta Biomater. 2018 Jan 15;66:192-199 [PMID: 29128536]
  13. Biosci Rep. 2015 Apr 28;35(2): [PMID: 25797907]
  14. Polymers (Basel). 2021 Sep 06;13(17): [PMID: 34503054]
  15. Biochem Biophys Res Commun. 2019 Jun 25;514(2):393-400 [PMID: 31047639]
  16. J Control Release. 2003 Dec 12;93(3):259-70 [PMID: 14644576]
  17. Biomacromolecules. 2012 Dec 10;13(12):4247-56 [PMID: 23153018]
  18. Biomacromolecules. 2001 Spring;2(1):288-94 [PMID: 11749185]
  19. J Bone Miner Res. 1992 Jun;7(6):683-92 [PMID: 1414487]
  20. Sci Rep. 2016 Feb 09;6:21507 [PMID: 26857143]
  21. Physiol Res. 2004;53 Suppl 1:S35-45 [PMID: 15119934]
  22. J Biomed Mater Res A. 2009 Sep 15;90(4):1092-106 [PMID: 18671267]
  23. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  24. J Biomed Mater Res. 1985 Apr;19(4):437-44 [PMID: 4055826]
  25. Adv Funct Mater. 2013 Aug 7;23(29):3628-3637 [PMID: 25309305]
  26. Bioact Mater. 2021 Aug 26;10:306-322 [PMID: 34901548]
  27. Biomaterials. 2003 Feb;24(5):801-8 [PMID: 12485798]
  28. J Basic Clin Physiol Pharmacol. 2021 Jun 25;32(4):555-560 [PMID: 34214349]
  29. Biomed Mater Eng. 2008;18(3):119-28 [PMID: 18725692]
  30. Int J Mol Sci. 2009 Aug 26;10(9):3722-42 [PMID: 19865515]
  31. J Mater Chem B. 2016 Dec 21;4(47):7493-7505 [PMID: 32263807]
  32. J Colloid Interface Sci. 2004 May 15;273(2):381-7 [PMID: 15082371]
  33. Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):1232-7 [PMID: 23639738]
  34. Pharm Dev Technol. 2015 Jan;20(1):1-11 [PMID: 25589433]
  35. Pharmaceuticals (Basel). 2021 Jun 26;14(7): [PMID: 34206843]
  36. Exp Cell Res. 2010 Aug 15;316(14):2291-300 [PMID: 20483354]

Grants

  1. MAT2017- 88923/Ministry of Economy, Industry and Competitiveness
  2. PID2021-124926NB-I00/Ministry of Economy, Industry and Competitiveness

Word Cloud

Created with Highcharts 10.0.0blendsPCL/PECpolymerboneregenerationobtainedpropertiescellnewtissuebiologicalbiomaterialsengineeringneatmicroscopyscanninggoodimprovementtermshydrophiliccharacterproliferationdifferentiationtimestudypreparedeasymannercastingobjectiveobtainingapplytogethercharacterizedinfraredspectroscopyFTIRatomicforceAFMelectronSEMdifferentialcalorimetryDSCthermogravimetricanalysisTGAfullcharacterizationkeydisentanglemiscibilitymeanscompatibilityusedworkadditionincreasingamountsPECshownremarkablerelationmechanicalmanageablematerialsincreaserespectPCLreflectedthoughtsmindtestedassessmentseveralparametersviabilityMC3T3-E1osteoblasticlinehMSCsevaluateresponsedifferentmembranesaimed"Invitro"biocompatibilitymethodschosenrathervivostudiesduelowercostfasterprocedureminimumethicalconcernsfirsteffectsstudiedresultsshowtunablehydrolyticdegradationmayregardedcandidatesperform"invivo"testscheckreal-lifeapplicabilityacronymweightpercentagesubindexPCLx/PECynotedtableonesummarycompositionsNewBlends:VitroCellResponsePreosteoblastsHumanMesenchymalStemCellsbiocompatiblepolymers

Similar Articles

Cited By