Transfering Targeted Maximum Likelihood Estimation for Causal Inference into Sports Science.

Talko B Dijkhuis, Frank J Blaauw
Author Information
  1. Talko B Dijkhuis: Department of Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands. ORCID
  2. Frank J Blaauw: Research and Innovation, Researchable B.V., Office 1.14, Zernikepark 12, 9747 AN Groningen, The Netherlands. ORCID

Abstract

Although causal inference has shown great value in estimating effect sizes in, for instance, physics, medical studies, and economics, it is rarely used in sports science. Targeted Maximum Likelihood Estimation (TMLE) is a modern method for performing causal inference. TMLE is forgiving in the misspecification of the causal model and improves the estimation of effect sizes using machine-learning methods. We demonstrate the advantage of TMLE in sports science by comparing the calculated effect size with a Generalized Linear Model (GLM). In this study, we introduce TMLE and provide a roadmap for making causal inference and apply the roadmap along with the methods mentioned above in a simulation study and case study investigating the influence of substitutions on the physical performance of the entire soccer team (i.e., the effect size of substitutions on the total physical performance). We construct a causal model, a misspecified causal model, a simulation dataset, and an observed tracking dataset of individual players from 302 elite soccer matches. The simulation dataset results show that TMLE outperforms GLM in estimating the effect size of the substitutions on the total physical performance. Furthermore, TMLE is most robust against model misspecification in both the simulation and the tracking dataset. However, independent of the method used in the tracking dataset, it was found that substitutes increase the physical performance of the entire soccer team.

Keywords

References

  1. Int J Environ Res Public Health. 2019 Oct 21;16(20): [PMID: 31640271]
  2. Psychol Methods. 2012 Jun;17(2):137-52 [PMID: 22545595]
  3. Int J Biostat. 2010;6(1):Article 26 [PMID: 21731529]
  4. Stat Appl Genet Mol Biol. 2007;6:Article25 [PMID: 17910531]
  5. Int J Epidemiol. 2002 Oct;31(5):1030-7 [PMID: 12435780]
  6. Hematol Oncol Clin North Am. 2000 Aug;14(4):745-60, vii [PMID: 10949771]
  7. PLoS One. 2019 Jan 31;14(1):e0211563 [PMID: 30703159]
  8. Springerplus. 2016 Aug 24;5(1):1410 [PMID: 27610328]
  9. Epidemiology. 2016 Jul;27(4):570-7 [PMID: 27031037]
  10. Res Q Exerc Sport. 2021 Dec;92(4):599-606 [PMID: 32603634]
  11. Epidemiology. 2014 Nov;25(6):898-901 [PMID: 25265135]
  12. J Strength Cond Res. 2020 Mar;34(3):808-817 [PMID: 29985222]
  13. Stat Med. 2018 Jul 20;37(16):2530-2546 [PMID: 29687470]
  14. Int J Sports Med. 2011 Jun;32(6):415-21 [PMID: 21590641]
  15. PLoS One. 2018 Jul 23;13(7):e0199519 [PMID: 30036364]
  16. Int J Sports Physiol Perform. 2014 May;9(3):415-24 [PMID: 24413912]
  17. Epidemiology. 2014 May;25(3):418-26 [PMID: 24713881]
  18. Stat Methods Med Res. 2016 Oct;25(5):2315-2336 [PMID: 24525488]

Grants

  1. MITH20138/Northern Netherlands Provinces alliance

Word Cloud

Created with Highcharts 10.0.0causalTMLEeffectdatasetinferencemodelsimulationphysicalperformancemethodssizestudysubstitutionssoccertrackingestimatingsizesusedsportsscienceTargetedMaximumLikelihoodEstimationmethodmisspecificationGLMroadmapentireteamtotalAlthoughshowngreatvalueinstancephysicsmedicalstudieseconomicsrarelymodernperformingforgivingimprovesestimationusingmachine-learningdemonstrateadvantagecomparingcalculatedGeneralizedLinearModelintroduceprovidemakingapplyalongmentionedcaseinvestigatinginfluenceieconstructmisspecifiedobservedindividualplayers302elitematchesresultsshowoutperformsFurthermorerobustHoweverindependentfoundsubstitutesincreaseTransferingCausalInferenceSportsSciencemachinelearningstatistics

Similar Articles

Cited By