Novel 3D-Printed Cell Culture Inserts for Air-Liquid Interface Cell Culture.

Magdalena Bauer, Magdalena Metzger, Marvin Corea, Barbara Schädl, Johannes Grillari, Peter Dungel
Author Information
  1. Magdalena Bauer: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria.
  2. Magdalena Metzger: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria.
  3. Marvin Corea: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria.
  4. Barbara Schädl: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria. ORCID
  5. Johannes Grillari: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria. ORCID
  6. Peter Dungel: Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria.

Abstract

In skin research, widely used in vitro 2D monolayer models do not sufficiently mimic physiological properties. To replace, reduce, and refine animal experimentation in the spirit of '3Rs', new approaches such as 3D skin equivalents (SE) are needed to close the in vitro/in vivo gap. Cell culture inserts to culture SE are commercially available, however, these inserts are expensive and of limited versatility regarding experimental settings. This study aimed to design novel cell culture inserts fabricated on commercially available 3D printers for the generation of full-thickness SE. A computer-aided design model was realized by extrusion-based 3D printing of polylactic acid filaments (PLA). Improvements in the design of the inserts for easier and more efficient handling were confirmed in cell culture experiments. Cytotoxic effects of the final product were excluded by testing the inserts in accordance with ISO-norm procedures. The final versions of the inserts were tested to generate skin-like 3D scaffolds cultured at an air-liquid interface. Stratification of the epidermal component was demonstrated by histological analyses. In conclusion, here we demonstrate a fast and cost-effective method for 3D-printed inserts suitable for the generation of 3D cell cultures. The system can be set-up with common 3D printers and allows high flexibility for generating customer-tailored cell culture plastics.

Keywords

References

  1. mSphere. 2018 Jul 18;3(4): [PMID: 30021875]
  2. Nat Rev Microbiol. 2018 Mar;16(3):143-155 [PMID: 29332945]
  3. Expert Rev Endocrinol Metab. 2012 Jul;7(4):461-472 [PMID: 23144648]
  4. J Invest Dermatol. 2014 Mar;134(3):719-727 [PMID: 24121402]
  5. J Invest Dermatol. 1983 Jul;81(1 Suppl):28s-33s [PMID: 6190962]
  6. Tissue Eng Part C Methods. 2021 Feb;27(2):49-58 [PMID: 33280487]
  7. Nat Neurosci. 2019 Apr;22(4):669-679 [PMID: 30886407]
  8. Injury. 2021 Jun;52(6):1341-1345 [PMID: 32962830]
  9. Adv Protein Chem. 2005;70:247-99 [PMID: 15837518]
  10. Tissue Eng Part C Methods. 2015 Sep;21(9):958-70 [PMID: 25837604]
  11. Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978 [PMID: 21421911]
  12. Tissue Eng. 2007 Nov;13(11):2667-79 [PMID: 17883323]
  13. J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):327-339 [PMID: 26509902]
  14. N Biotechnol. 2022 Jul 25;69:55-61 [PMID: 35337999]
  15. Biomaterials. 2011 Dec;32(36):9622-9 [PMID: 21944829]
  16. Biomaterials. 2010 Nov;31(31):7847-55 [PMID: 20696471]
  17. Arch Toxicol. 2018 Jan;92(1):181-194 [PMID: 28776197]
  18. J Leukoc Biol. 2011 Nov;90(5):1027-33 [PMID: 21697260]
  19. AAPS PharmSciTech. 2021 Jul 20;22(6):205 [PMID: 34286391]
  20. Australas Phys Eng Sci Med. 2019 Dec;42(4):1165-1176 [PMID: 31728939]
  21. Arch Dermatol Res. 2004 Oct;296(5):203-11 [PMID: 15349789]
  22. Ann Plast Surg. 2016 Oct;77(4):401-5 [PMID: 27387468]
  23. Reprod Biol. 2014 Mar;14(1):61-7 [PMID: 24607256]
  24. Adv Drug Deliv Rev. 2009 Oct 5;61(12):1007-19 [PMID: 19651166]
  25. Polymers (Basel). 2016 Feb 04;8(2): [PMID: 30979136]
  26. Anal Chim Acta. 2020 Jun 29;1118:73-91 [PMID: 32418606]
  27. Front Bioeng Biotechnol. 2018 Oct 31;6:154 [PMID: 30430109]
  28. Immunology. 2020 Jun;160(2):116-125 [PMID: 31709535]
  29. N Engl J Med. 2019 Jun 13;380(24):2349-2359 [PMID: 31189038]
  30. J Biol Methods. 2021 Jun 30;8(2):e150 [PMID: 34258308]
  31. Subcell Biochem. 2017;82:405-456 [PMID: 28101869]
  32. J Craniomaxillofac Surg. 1998 Apr;26(2):87-91 [PMID: 9617671]
  33. NPJ Aging Mech Dis. 2020 Mar 6;6:4 [PMID: 32194977]
  34. J Transl Med. 2020 Feb 3;18(1):53 [PMID: 32014004]

Grants

  1. GD 128 2021/Allgemeine Unfallversicherungsanstalt
  2. TissYou Eurostars E!115719/European Commission

Word Cloud

Created with Highcharts 10.0.03DinsertsculturecellskinSECelldesigncommerciallyavailableprintersgenerationfull-thicknessmodelprintingPLAfinalCultureresearchwidelyusedvitro2Dmonolayermodelssufficientlymimicphysiologicalpropertiesreplacereducerefineanimalexperimentationspirit'3Rs'newapproachesequivalentsneededclosevitro/invivogaphoweverexpensivelimitedversatilityregardingexperimentalsettingsstudyaimednovelfabricatedcomputer-aidedrealizedextrusion-basedpolylacticacidfilamentsImprovementseasierefficienthandlingconfirmedexperimentsCytotoxiceffectsproductexcludedtestingaccordanceISO-normproceduresversionstestedgenerateskin-likescaffoldsculturedair-liquidinterfaceStratificationepidermalcomponentdemonstratedhistologicalanalysesconclusiondemonstratefastcost-effectivemethod3D-printedsuitableculturessystemcanset-upcommonallowshighflexibilitygeneratingcustomer-tailoredplasticsNovel3D-PrintedInsertsAir-LiquidInterfaceinserttissueengineering

Similar Articles

Cited By