Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts.

Mohammad Mansoob Khan, Ashmalina Rahman, Shaidatul Najihah Matussin
Author Information
  1. Mohammad Mansoob Khan: Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei. ORCID
  2. Ashmalina Rahman: Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei.
  3. Shaidatul Najihah Matussin: Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei.

Abstract

In the field of photocatalysis, metal-organic frameworks (MOFs) have drawn a lot of attention. MOFs have a number of advantages over conventional semiconductors, including high specific surface area, large number of active sites, and an easily tunable porous structure. In this perspective review, different synthesis methods used to prepare MOFs and MOFs-based heterostructures have been discussed. Apart from this, the application of MOFs and MOFs-based heterostructures as photocatalysts for photocatalytic degradation of different types of pollutants have been compiled. This paper also highlights the different strategies that have been developed to modify and regulate pristine MOFs for improved photocatalytic performance. The MOFs modifications may result in better visible light absorption, effective photo-generated charge carriers (e/h), separation and transfer as well as improved recyclability. Despite that, there are still many obstacles and challenges that need to be addressed. In order to meet the requirements of using MOFs and MOFs-based heterostructures in photocatalysis for low-cost practical applications, future development and prospects have also been discussed.

Keywords

References

  1. J Colloid Interface Sci. 2022 Jan 15;606(Pt 1):353-366 [PMID: 34392031]
  2. Int J Biol Macromol. 2021 Mar 31;174:319-329 [PMID: 33529627]
  3. J Hazard Mater. 2022 Jan 5;421:126720 [PMID: 34343883]
  4. Chemosphere. 2020 Mar;243:125378 [PMID: 31765898]
  5. Front Chem. 2022 Apr 25;10:881518 [PMID: 35548677]
  6. RSC Adv. 2018 Sep 24;8(58):33059-33064 [PMID: 35548163]
  7. Nanomaterials (Basel). 2020 Aug 06;10(8): [PMID: 32781518]
  8. Chemosphere. 2022 Jan;286(Pt 3):131875 [PMID: 34411933]
  9. ACS Appl Mater Interfaces. 2021 Jul 28;13(29):35223-35231 [PMID: 34254786]
  10. Chemosphere. 2021 Jun;272:129501 [PMID: 33486457]
  11. Chem Soc Rev. 2017 Oct 2;46(19):5730-5770 [PMID: 28682401]
  12. J Am Chem Soc. 2021 Jul 21;143(28):10727-10734 [PMID: 34242007]
  13. J Colloid Interface Sci. 2022 Feb;607(Pt 1):595-606 [PMID: 34509734]
  14. J Am Chem Soc. 2018 Apr 11;140(14):4812-4819 [PMID: 29542320]
  15. Chemosphere. 2021 Dec;284:131386 [PMID: 34323787]
  16. J Mater Chem B. 2021 Jul 21;9(28):5599-5620 [PMID: 34161404]
  17. J Am Chem Soc. 2016 Nov 2;138(43):14449-14457 [PMID: 27768297]
  18. Nat Commun. 2021 May 11;12(1):2682 [PMID: 33976220]
  19. Chem Rev. 2012 Feb 8;112(2):933-69 [PMID: 22098087]
  20. Angew Chem Int Ed Engl. 2012 Apr 2;51(14):3364-7 [PMID: 22359408]
  21. Sci Rep. 2018 Jan 29;8(1):1723 [PMID: 29379031]
  22. Small. 2018 Oct;14(40):e1801900 [PMID: 30091524]
  23. Inorg Chem. 2018 Oct 15;57(20):12885-12899 [PMID: 30285434]
  24. Chemosphere. 2022 May;295:133835 [PMID: 35122821]
  25. Acc Chem Res. 2019 Feb 19;52(2):356-366 [PMID: 30571078]
  26. J Colloid Interface Sci. 2021 Dec 15;604:310-318 [PMID: 34265688]
  27. ACS Cent Sci. 2019 Oct 23;5(10):1699-1706 [PMID: 31660438]
  28. ACS Appl Mater Interfaces. 2020 Jul 29;12(30):33679-33689 [PMID: 32633480]
  29. EnergyChem. 2019 Jul;1(1): [PMID: 38711814]
  30. Science. 2013 Aug 30;341(6149):1230444 [PMID: 23990564]
  31. Carbohydr Polym. 2020 Nov 1;247:116691 [PMID: 32829819]
  32. Chem Commun (Camb). 2019 Sep 4;55(68):10056-10059 [PMID: 31369024]
  33. J Colloid Interface Sci. 2018 Nov 15;530:481-492 [PMID: 29990784]
  34. Bioprocess Biosyst Eng. 2021 Jul;44(7):1333-1372 [PMID: 33661388]
  35. ACS Appl Mater Interfaces. 2017 Aug 16;9(32):27332-27337 [PMID: 28745483]
  36. J Colloid Interface Sci. 2021 Feb 1;583:435-447 [PMID: 33011412]
  37. Sci Total Environ. 2022 Jan 15;804:150096 [PMID: 34798724]
  38. Dalton Trans. 2020 Sep 15;49(35):12136-12144 [PMID: 32840528]
  39. J Am Chem Soc. 2018 Aug 22;140(33):10488-10496 [PMID: 30040404]
  40. Chemosphere. 2021 Dec;285:131432 [PMID: 34273693]
  41. Angew Chem Int Ed Engl. 2021 Dec 6;60(50):26038-26052 [PMID: 34213064]
  42. Membranes (Basel). 2021 Jul 12;11(7): [PMID: 34357173]
  43. J Colloid Interface Sci. 2022 Feb;607(Pt 2):1180-1188 [PMID: 34571305]

Grants

  1. UBD/RSCH/1.4/FICBF(b)/2021/035/Universiti Brunei Darussalam

Word Cloud

Created with Highcharts 10.0.0MOFsphotocatalysisdifferentMOFs-basedheterostructuresmetal-organicframeworksnumberdiscussedphotocatalyticalsoimprovedMetal-OrganicfielddrawnlotattentionadvantagesconventionalsemiconductorsincludinghighspecificsurfacearealargeactivesiteseasilytunableporousstructureperspectivereviewsynthesismethodsusedprepareApartapplicationphotocatalystsdegradationtypespollutantscompiledpaperhighlightsstrategiesdevelopedmodifyregulatepristineperformancemodificationsmayresultbettervisiblelightabsorptioneffectivephoto-generatedchargecarrierse/hseparationtransferwellrecyclabilityDespitestillmanyobstacleschallengesneedaddressedordermeetrequirementsusinglow-costpracticalapplicationsfuturedevelopmentprospectsRecentProgressFrameworksFrameworks-BasedHeterostructuresPhotocatalystsMOForganiclinkers

Similar Articles

Cited By