New Fmoc-Amino Acids/Peptides-Based Supramolecular Gels Obtained through Co-Assembly Process: Preparation and Characterization.

Alexandra Croitoriu, Loredana Elena Nita, Alina Gabriela Rusu, Alina Ghilan, Maria Bercea, Aurica P Chiriac
Author Information
  1. Alexandra Croitoriu: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
  2. Loredana Elena Nita: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
  3. Alina Gabriela Rusu: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania. ORCID
  4. Alina Ghilan: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
  5. Maria Bercea: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania. ORCID
  6. Aurica P Chiriac: "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania. ORCID

Abstract

One of the methods of obtaining supramolecular gels consists of the possibility of self-assembly of low molecular weight gelators (LMWGs). However, LMWG-based gels are often difficult to handle, easy to destroy and have poor rheological performance. In order to improve the gels’ properties, the LMWGs molecules are co-assembled, which induces more cross-links with more stable structures. Starting from these aspects, the present study refers to the preparation of a bionic hydrogel stabilized with a physiologically occurring, bifunctional biomolecule, L-lysine, co-assembled with other amino acids or peptides (such as a modified amino acid (Fmoc-serine or Fmoc-glutamic acid) or a tripeptide (Fmoc-Gly-Gly-Gly)) with the potential to support the repair of injuries or the age-related impaired structures or functions of living tissues. The introduction of a copartner aims to improve hydrogel characteristics from a morphological, rheological and structural point of view. On the other hand, the process will allow the understanding of the phenomenon of specific self-association and molecular recognition. Various characterization techniques were used to assess the ability to co-assemble: DLS, FT-IR, SEM and fluorescence microscopy, rheology and thermal analysis. Studies have confirmed that the supramolecular structure occurs through the formation of inter- and intramolecular physical bonds that ensure the formation of fibrils organized into 3D networks. The rheological data, namely the G′ > G″ and tan δ approximately 0.1−0.2 gel-like behavior observed for all studied samples, demonstrate and sustain the appearance of the co-assembly processes and the ability of the samples to act as LMWG. From the studied systems, the Fmoc−Lys−Fmoc_ Fmoc−Glu sample presented the best rheological characteristics that are consistent with the observations that resulted from the dichroism, fluorescence and SEM investigations.

Keywords

References

  1. Antibiotics (Basel). 2020 Jun 17;9(6): [PMID: 32560458]
  2. Soft Matter. 2018 Nov 28;14(46):9343-9350 [PMID: 30307451]
  3. J Mater Sci Mater Med. 2020 Jul 29;31(8):73 [PMID: 32729101]
  4. Colloids Surf B Biointerfaces. 2020 Jan 1;185:110581 [PMID: 31677412]
  5. Chemistry. 2019 Jun 12;25(33):7881-7887 [PMID: 30945773]
  6. Biomedicines. 2021 Jun 15;9(6): [PMID: 34203919]
  7. Adv Mater. 2020 Mar;32(9):e1906043 [PMID: 31984580]
  8. Nanoscale. 2017 Aug 31;9(34):12330-12334 [PMID: 28825442]
  9. Int J Pharm Investig. 2012 Jul;2(3):134-9 [PMID: 23373004]
  10. Biomater Sci. 2017 Dec 19;6(1):38-59 [PMID: 29164186]
  11. Nanomaterials (Basel). 2021 Apr 26;11(5): [PMID: 33925961]
  12. Mater Sci Eng C Mater Biol Appl. 2016 Sep 1;66:221-229 [PMID: 27207058]
  13. J Phys Chem B. 2010 Apr 8;114(13):4407-15 [PMID: 20297770]
  14. Soft Matter. 2015 Nov 7;11(41):8126-40 [PMID: 26338226]
  15. Pharmaceutics. 2021 Aug 03;13(8): [PMID: 34452157]
  16. Macromol Biosci. 2019 Jan;19(1):e1800452 [PMID: 30644656]
  17. Pharmaceutics. 2022 Feb 19;14(2): [PMID: 35214178]
  18. Bioact Mater. 2020 Dec 13;6(7):1878-1909 [PMID: 33364529]
  19. Can J Microbiol. 2021 Feb;67(2):119-137 [PMID: 32783775]
  20. Small. 2014 Mar 12;10(5):973-9 [PMID: 24027125]
  21. Biochemistry. 2005 Feb 8;44(5):1414-22 [PMID: 15683226]
  22. Chemphyschem. 2015 Sep 14;16(13):2768-2774 [PMID: 26260223]
  23. Eur J Biochem. 2001 Feb;268(4):1118-28 [PMID: 11179978]
  24. Gels. 2021 Oct 25;7(4): [PMID: 34842654]
  25. Nanoscale. 2014 Nov 21;6(22):13719-25 [PMID: 25285577]

Grants

  1. 339PED ⁄ 2020, PN-III-P2-2.1-PED-2019- 2743/Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Word Cloud

Created with Highcharts 10.0.0rheologicalhydrogelsupramoleculargelsmolecularLMWGsimproveco-assembledstructuresbionicaminoacidcharacteristicsabilitySEMfluorescenceformationstudiedsamplesOnemethodsobtainingconsistspossibilityself-assemblylowweightgelatorsHoweverLMWG-basedoftendifficulthandleeasydestroypoorperformanceordergels’propertiesmoleculesinducescross-linksstableStartingaspectspresentstudyreferspreparationstabilizedphysiologicallyoccurringbifunctionalbiomoleculeL-lysineacidspeptidesmodifiedFmoc-serineFmoc-glutamictripeptideFmoc-Gly-Gly-Glypotentialsupportrepairinjuriesage-relatedimpairedfunctionslivingtissuesintroductioncopartneraimsmorphologicalstructuralpointviewhandprocesswillallowunderstandingphenomenonspecificself-associationrecognitionVariouscharacterizationtechniquesusedassessco-assemble:DLSFT-IRmicroscopyrheologythermalanalysisStudiesconfirmedstructureoccursinter-intramolecularphysicalbondsensurefibrilsorganized3DnetworksdatanamelyG′>G″tanδapproximately01−02gel-likebehaviorobserveddemonstratesustainappearanceco-assemblyprocessesactLMWGsystemsFmoc−Lys−Fmoc_Fmoc−GlusamplepresentedbestconsistentobservationsresulteddichroisminvestigationsNewFmoc-AminoAcids/Peptides-BasedSupramolecularGelsObtainedCo-AssemblyProcess:PreparationCharacterizationFmocpeptidegelatorsupramolecules

Similar Articles

Cited By