Assays for the Evaluation of the Immune Response to Marburg and Ebola Sudan Vaccination-Filovirus Animal Nonclinical Group Anti-Marburg Virus Glycoprotein Immunoglobulin G Enzyme-Linked Immunosorbent Assay and a Pseudovirion Neutralization Assay.

Thomas L Rudge, Nicholas J Machesky, Karen A Sankovich, Erin E Lemmon, Christopher S Badorrek, Rachel Overman, Nancy A Niemuth, Michael S Anderson
Author Information
  1. Thomas L Rudge: Battelle, West Jefferson, OH 43162, USA.
  2. Nicholas J Machesky: Battelle, West Jefferson, OH 43162, USA.
  3. Karen A Sankovich: Battelle, West Jefferson, OH 43162, USA.
  4. Erin E Lemmon: Battelle, West Jefferson, OH 43162, USA.
  5. Christopher S Badorrek: Contract Support for the U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA.
  6. Rachel Overman: U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA.
  7. Nancy A Niemuth: Battelle, West Jefferson, OH 43162, USA. ORCID
  8. Michael S Anderson: Battelle, West Jefferson, OH 43162, USA.

Abstract

Since the discovery of the Marburg virus (MARV) in 1967 and Ebola virus (EBOV) in 1976, there have been over 40 reported outbreaks of filovirus disease with case fatality rates greater than 50%. This underscores the need for efficacious vaccines against these highly pathogenic filoviruses. Due to the sporadic and unpredictable nature of filovirus outbreaks, such a vaccine would likely need to be vetted through the U.S. Food and Drug Administration (FDA), following the Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal challenge, will need to be bridged for human immune response distributions in clinical trials. A correlate of protection has not yet been identified for the filovirus disease, but antibodies, specifically anti-glycoprotein (GP) antibodies, are believed to be critical in providing protection against the filovirus disease following vaccination and are thus a strong candidate for a correlate of protection. Thus, species-neutral methods capable of the detection and bridging of these antibody immune responses, such as methods to quantify anti-GP immunoglobulin G (IgG)-binding antibodies and neutralizing antibodies, are needed. Reported here is the development and qualification of two Filovirus Animal Nonclinical Group (FANG) anti-GP IgG Enzyme-Linked Immunosorbent Assays (ELISAs) to quantify anti-MARV and anti-Sudan virus (SUDV) IgG antibodies in human and NHP serum samples, as well as the development of pseudovirion neutralization assays (PsVNAs) to quantify MARV- and SUDV-neutralizing antibodies in human and NHP serum samples.

Keywords

References

  1. N Engl J Med. 2020 May 7;382(19):1832-1842 [PMID: 32441897]
  2. Rev Med Virol. 2017 Jan;27(1): [PMID: 27714898]
  3. Semin Immunol. 2018 Oct;39:65-72 [PMID: 30041831]
  4. Vaccine. 2021 Jan 8;39(2):202-208 [PMID: 33309082]
  5. Nat Rev Microbiol. 2019 May;17(5):261-263 [PMID: 30926957]
  6. Virology. 2010 Jun 5;401(2):228-35 [PMID: 20304456]
  7. Science. 2000 Mar 3;287(5458):1664-6 [PMID: 10698744]
  8. N Engl J Med. 2016 Apr 28;374(17):1635-46 [PMID: 25629663]
  9. Viruses. 2012 Oct 01;4(10):1878-927 [PMID: 23202446]
  10. Lancet Infect Dis. 2016 Mar;16(3):311-20 [PMID: 26725450]
  11. Nat Microbiol. 2019 Mar;4(3):390-395 [PMID: 30617348]
  12. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17182-7 [PMID: 25404321]
  13. J Infect Dis. 2015 Oct 1;212 Suppl 2:S443-51 [PMID: 26109675]
  14. Pediatr Infect Dis J. 2015 Aug;34(8):893-7 [PMID: 25831417]
  15. PLoS One. 2019 Apr 18;14(4):e0215457 [PMID: 30998735]
  16. Lancet Glob Health. 2017 Mar;5(3):e324-e334 [PMID: 28017642]
  17. Microbes Infect. 2005 Jun;7(7-8):1005-14 [PMID: 16002313]
  18. JAMA. 2016 Apr 19;315(15):1610-23 [PMID: 27092831]
  19. Bull World Health Organ. 1978;56(2):271-93 [PMID: 307456]
  20. Science. 2015 Aug 14;349(6249):739-42 [PMID: 26249231]
  21. J Infect Dis. 2015 Feb 15;211(4):549-57 [PMID: 25225676]
  22. Vaccines (Basel). 2021 Sep 19;9(9): [PMID: 34579282]
  23. N Engl J Med. 2016 Apr 28;374(17):1647-60 [PMID: 25830326]
  24. Sci Rep. 2016 Feb 15;6:21674 [PMID: 26876974]
  25. Nat Med. 2014 Oct;20(10):1126-9 [PMID: 25194571]
  26. Hum Vaccin Immunother. 2017 Mar 4;13(3):613-620 [PMID: 28152326]
  27. PLoS Pathog. 2017 Jan 12;13(1):e1006037 [PMID: 28081225]
  28. EBioMedicine. 2017 May;19:107-118 [PMID: 28434944]
  29. PLoS Pathog. 2021 Dec 9;17(12):e1010078 [PMID: 34882741]
  30. Hum Vaccin Immunother. 2020 Nov 1;16(11):2855-2860 [PMID: 32275465]
  31. J Mol Biol. 2008 Jan 4;375(1):202-16 [PMID: 18005986]
  32. Nat Med. 2016 Dec;22(12):1439-1447 [PMID: 27798615]
  33. Comp Med. 2015 Jun;65(3):241-59 [PMID: 26141449]
  34. Clin Infect Dis. 2010 Jun 1;50(11):1439-47 [PMID: 20426575]
  35. N Engl J Med. 2017 Mar 9;376(10):928-938 [PMID: 25426834]
  36. J Autoimmun. 2020 Jan;106:102375 [PMID: 31806422]
  37. Nat Rev Microbiol. 2009 May;7(5):393-400 [PMID: 19369954]
  38. J Virol. 2012 Mar;86(5):2809-16 [PMID: 22171276]
  39. Fed Regist. 2002 May 31;67(105):37988-98 [PMID: 12049094]
  40. J Virol. 2017 Apr 28;91(10): [PMID: 28250127]
  41. Hum Vaccin Immunother. 2017 Feb;13(2):266-270 [PMID: 27925844]
  42. Virology (Auckl). 2019 Jun 21;10:1178122X19849927 [PMID: 31258326]
  43. Cell. 2020 Apr 2;181(1):6 [PMID: 32243796]
  44. Lancet Infect Dis. 2015 Oct;15(10):1156-1166 [PMID: 26248510]
  45. Lancet. 2017 Feb 11;389(10069):621-628 [PMID: 28017399]
  46. Cell Rep. 2017 Apr 11;19(2):413-424 [PMID: 28402862]
  47. J Infect Dis. 2017 Apr 1;215(7):1107-1110 [PMID: 28498995]
  48. Viruses. 2012 Oct 19;4(10):2312-6 [PMID: 23202465]
  49. Science. 2016 Mar 18;351(6279):1343-6 [PMID: 26917592]
  50. Nat Med. 2005 Jul;11(7):786-90 [PMID: 15937495]
  51. N Engl J Med. 2017 Jan 26;376(4):330-341 [PMID: 25830322]
  52. Vaccine. 2010 Dec 16;29(2):304-13 [PMID: 21034824]
  53. Lancet. 2015 Apr 18;385(9977):1545-54 [PMID: 25540891]
  54. J Infect Dis. 2007 Nov 15;196 Suppl 2:S131-5 [PMID: 17940940]

Grants

  1. HHSN272201200003I/NIAID NIH HHS
  2. HHSN272201200003I/HHSN27200009/National Institute of Allergy and Infectious Diseases
  3. GS00Q140ADU402/United States Department of Defense

Word Cloud

Created with Highcharts 10.0.0antibodiesvirusfilovirusAnimalMarburgdiseaseneedfollowingimmunehumanprotectionquantifyIgGEbolaoutbreaksFDARuleresponsescorrelatemethodsanti-GPGdevelopmentNonclinicalGroupEnzyme-LinkedImmunosorbentAssaysNHPserumsamplespseudovirionneutralizationSudanAssaySincediscoveryMARV1967EBOV197640reportedcasefatalityratesgreater50%underscoresefficaciousvaccineshighlypathogenicfilovirusesDuesporadicunpredictablenaturevaccinelikelyvettedUSFoodDrugAdministrationsimilarEuropeanMedicinesAgencyEMAregulatorypathwayvaccine-inducedcorrelatingsurvivalnon-humanprimatesNHPsanotherwell-characterizedanimalmodellethalchallengewillbridgedresponsedistributionsclinicaltrialsyetidentifiedspecificallyanti-glycoproteinGPbelievedcriticalprovidingvaccinationthusstrongcandidateThusspecies-neutralcapabledetectionbridgingantibodyimmunoglobulin-bindingneutralizingneededReportedqualificationtwoFilovirusFANGELISAsanti-MARVanti-SudanSUDVwellassaysPsVNAsMARV-SUDV-neutralizingEvaluationImmuneResponseVaccination-FilovirusAnti-MarburgVirusGlycoproteinImmunoglobulinPseudovirionNeutralizationELISAassay

Similar Articles

Cited By