Development and characterization of a CRISPR/Cas9-mediated knockout chicken model lacking mature B and T cells.

Kyung Youn Lee, Hyeon Jeong Choi, Kyung Je Park, Seung Je Woo, Young Min Kim, Jae Yong Han
Author Information
  1. Kyung Youn Lee: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
  2. Hyeon Jeong Choi: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
  3. Kyung Je Park: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
  4. Seung Je Woo: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
  5. Young Min Kim: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
  6. Jae Yong Han: Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.

Abstract

Although birds have been used historically as a model animal for immunological research, resulting in remarkable achievements, immune cell development in birds themselves has yet to be fully elucidated. In this study, we firstly generated an immunodeficient chicken model using a CRISPR/Cas9-mediated recombination activating gene 1 () knockout, to investigate avian-specific immune cell development. Unlike previously reported immunoglobulin (Ig) heavy chain knockout chickens, the proportion and development of B cells in both and embryos were significantly impaired during B cell proliferation (embryonic day 16 to 18). Our findings indicate that, this is likely due to disordered B cell receptor (BCR)-mediated signaling and interaction of CXC motif chemokine receptor (CXCR4) with CXCL12, resulting from disrupted Ig V(D)J recombination at the embryonic stage. Histological analysis after hatching showed that, unlike wild-type (WT) and chickens, lymphatic organs in 3-week old chickens were severely damaged. Furthermore, relative to WT chickens, and birds had reduced serum Igs, fewer mature CD4 and CD8 T lymphocytes. Furthermore, BCR-mediated B cell activation in chickens was insufficient, leading to decreased expression of the activation-induced deaminase () gene, which is important for Ig gene conversion. Overall, this immunodeficient chicken model underlines the pivotal role of in immature B cell development, Ig gene conversion during embryonic stages, and demonstrates the dose-dependent regulatory role of during immune cell development. This model will provide ongoing insights for understanding chicken immune system development and applied in the fields of immunology and biomedical science.

Keywords

References

  1. J Immunol. 2004 Feb 15;172(4):2210-8 [PMID: 14764688]
  2. J Exp Med. 1916 Jul 1;24(1):1-5 [PMID: 19868024]
  3. J Immunol. 2005 Feb 15;174(4):2012-20 [PMID: 15699130]
  4. Eur J Immunol. 1989 Feb;19(2):239-43 [PMID: 2649381]
  5. Front Immunol. 2020 Jan 10;10:3057 [PMID: 31998323]
  6. Science. 2002 Feb 15;295(5558):1301-6 [PMID: 11847344]
  7. J Immunol. 2012 Jan 1;188(1):322-33 [PMID: 22131336]
  8. Cell Res. 2013 Aug;23(8):1059-62 [PMID: 23835472]
  9. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7699-703 [PMID: 1652759]
  10. Adv Immunol. 1990;48:41-67 [PMID: 2112303]
  11. BMC Genomics. 2006 Aug 30;7:220 [PMID: 16939661]
  12. Science. 2001 Sep 14;293(5537):2111-4 [PMID: 11509691]
  13. J Anim Sci Biotechnol. 2013 Mar 08;4(1):10 [PMID: 23497583]
  14. J Exp Med. 2001 Jul 2;194(1):45-56 [PMID: 11435471]
  15. Cell. 2000 Sep 1;102(5):565-75 [PMID: 11007475]
  16. Nature. 1965 Jan 9;205:143-6 [PMID: 14276257]
  17. Trends Immunol. 2020 Jul;41(7):629-642 [PMID: 32451219]
  18. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10806-11 [PMID: 10485907]
  19. Dev Comp Immunol. 2017 Aug;73:175-183 [PMID: 28377199]
  20. FASEB J. 2019 Jul;33(7):8519-8529 [PMID: 30951374]
  21. J Exp Med. 2014 Dec 15;211(13):2567-81 [PMID: 25403444]
  22. Avian Pathol. 2019 Aug;48(4):288-310 [PMID: 31063007]
  23. Eur J Immunol. 2016 Sep;46(9):2137-48 [PMID: 27392810]
  24. Eur J Immunol. 2006 Mar;36(3):516-25 [PMID: 16482514]
  25. Cell. 1987 Feb 13;48(3):379-88 [PMID: 3100050]
  26. Cell. 1989 Oct 6;59(1):171-83 [PMID: 2507167]
  27. Eur J Immunol. 1991 Nov;21(11):2661-70 [PMID: 1936114]
  28. Aging Cell. 2019 Oct;18(5):e13020 [PMID: 31348603]
  29. Immunity. 1999 Apr;10(4):463-71 [PMID: 10229189]
  30. Cell. 2000 Sep 1;102(5):553-63 [PMID: 11007474]
  31. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4023-7 [PMID: 1570327]
  32. J Allergy Clin Immunol. 2014 Dec;134(6):1375-1380 [PMID: 24996264]
  33. Cell. 1992 Mar 6;68(5):869-77 [PMID: 1547488]
  34. J Exp Med. 1989 Aug 1;170(2):543-57 [PMID: 2666562]
  35. Cell Immunol. 1973 Dec;9(3):377-83 [PMID: 4758874]
  36. PLoS One. 2014 Dec 01;9(12):e113833 [PMID: 25437445]
  37. Immunity. 1996 Dec;5(6):537-49 [PMID: 8986714]
  38. J Immunol. 1971 Feb;106(2):371-82 [PMID: 5101790]
  39. J Immunol. 2014 Apr 1;192(7):3218-27 [PMID: 24567533]
  40. Int Immunol. 2001 Jun;13(6):757-62 [PMID: 11369702]
  41. Mol Cell Biol. 1983 Jul;3(7):1317-32 [PMID: 6412070]
  42. Transplantation. 1971 May;11(5):433-9 [PMID: 5089507]
  43. J Immunol. 2000 May 15;164(10):5041-8 [PMID: 10799859]
  44. Poult Sci. 1994 Jul;73(7):1012-8 [PMID: 7937462]
  45. Immunol Today. 1985 Jul;6(7):223-7 [PMID: 25290185]
  46. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15329-34 [PMID: 8986811]
  47. Int Immunol. 2007 Feb;19(2):203-15 [PMID: 17220480]
  48. Front Immunol. 2020 Jul 14;11:1468 [PMID: 32765509]
  49. Life Sci Alliance. 2021 Aug 25;4(11): [PMID: 34433614]
  50. Lancet. 1966 Jun 25;1(7452):1388-91 [PMID: 4160954]
  51. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10951-5 [PMID: 1835793]
  52. Blood. 2018 Jul 19;132(3):281-292 [PMID: 29743177]
  53. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20170-5 [PMID: 24282302]
  54. J Immunol. 1999 Oct 1;163(7):3858-66 [PMID: 10490985]

MeSH Term

Animals
CRISPR-Cas Systems
Chickens
Genes, RAG-1
Homeodomain Proteins
Immunoglobulin Heavy Chains
Immunologic Deficiency Syndromes
T-Lymphocytes

Chemicals

Homeodomain Proteins
Immunoglobulin Heavy Chains

Word Cloud

Created with Highcharts 10.0.0cellBdevelopmentmodelchickenchickensimmunegeneknockoutIgembryonicbirdsimmunodeficientreceptorTresultingCRISPR/Cas9-mediatedrecombinationcellsstageWTFurthermorematureconversionroleimmunologyAlthoughusedhistoricallyanimalimmunologicalresearchremarkableachievementsyetfullyelucidatedstudyfirstlygeneratedusingactivating1investigateavian-specificUnlikepreviouslyreportedimmunoglobulinheavychainproportionembryossignificantlyimpairedproliferationday1618findingsindicatelikelyduedisorderedBCR-mediatedsignalinginteractionCXCmotifchemokineCXCR4CXCL12disruptedVDJHistologicalanalysishatchingshowedunlikewild-typelymphaticorgans3-weekoldseverelydamagedrelativereducedserumIgsfewerCD4CD8lymphocytesBCR-mediatedactivationinsufficientleadingdecreasedexpressionactivation-induceddeaminaseimportantOverallunderlinespivotalimmaturestagesdemonstratesdose-dependentregulatorywillprovideongoinginsightsunderstandingsystemappliedfieldsbiomedicalscienceDevelopmentcharacterizationlackingCRISPR/Cas9RAG1avian

Similar Articles

Cited By