Review and assessment of Boolean approaches for inference of gene regulatory networks.

Žiga Pušnik, Miha Mraz, Nikolaj Zimic, Miha Moškon
Author Information
  1. Žiga Pušnik: University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia.
  2. Miha Mraz: University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia.
  3. Nikolaj Zimic: University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia.
  4. Miha Moškon: University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia.

Abstract

Boolean descriptions of gene regulatory networks can provide an insight into interactions between genes. Boolean networks hold predictive power, are easy to understand, and can be used to simulate the observed networks in different scenarios. We review fundamental and state-of-the-art methods for inference of Boolean networks. We introduce a methodology for a straightforward evaluation of Boolean inference approaches based on the generation of evaluation datasets, application of selected inference methods, and evaluation of performance measures to guide the selection of the best method for a given inference problem. We demonstrate this procedure on inference methods REVEAL (REVerse Engineering ALgorithm), Best-Fit Extension, MIBNI (Mutual Information-based Boolean Network Inference), GABNI (Genetic Algorithm-based Boolean Network Inference) and ATEN (AND/OR Tree ENsemble algorithm), which infers Boolean descriptions of gene regulatory networks from discretised time series data. Boolean inference approaches tend to perform better in terms of dynamic accuracy, and slightly worse in terms of structural correctness. We believe that the proposed methodology and provided guidelines will help researchers to develop Boolean inference approaches with a good predictive capability while maintaining structural correctness and biological relevance.

Keywords

References

  1. Nature. 2008 Aug 28;454(7208):1119-22 [PMID: 18668041]
  2. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W115-21 [PMID: 19465394]
  3. PLoS One. 2013 Jun 21;8(6):e66031 [PMID: 23805196]
  4. Entropy (Basel). 2022 Feb 22;24(3): [PMID: 35327822]
  5. Ann N Y Acad Sci. 2007 Dec;1115:1-22 [PMID: 17925349]
  6. J Cell Biol. 2011 Nov 28;195(5):709-20 [PMID: 22123859]
  7. Bioinformatics. 2020 Dec 30;36(Suppl_2):i762-i769 [PMID: 33381823]
  8. Front Physiol. 2018 Jun 08;9:695 [PMID: 29937735]
  9. PLoS One. 2008 Feb 27;3(2):e1672 [PMID: 18301750]
  10. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]
  11. BioData Min. 2021 Feb 4;14(1):13 [PMID: 33541410]
  12. Bioinformatics. 2019 Sep 15;35(18):3421-3432 [PMID: 30932143]
  13. Bioinformatics. 2011 Jun 1;27(11):1529-36 [PMID: 21471013]
  14. J Comput Biol. 2002;9(1):67-103 [PMID: 11911796]
  15. Curr Opin Biotechnol. 2020 Jun;63:89-98 [PMID: 31927423]
  16. Bioinformatics. 2017 Feb 15;33(4):601-604 [PMID: 27797768]
  17. BMC Bioinformatics. 2019 Jan 7;20(1):12 [PMID: 30616521]
  18. Cell. 2001 Sep 21;106(6):697-708 [PMID: 11572776]
  19. Nat Biotechnol. 2013 Jan;31(1):46-53 [PMID: 23222703]
  20. Science. 2022 Apr;376(6588):44-53 [PMID: 35357919]
  21. Bioinformatics. 2011 Aug 15;27(16):2263-70 [PMID: 21697125]
  22. Pac Symp Biocomput. 1998;:18-29 [PMID: 9697168]
  23. J Theor Biol. 1973 Apr;39(1):103-29 [PMID: 4741704]
  24. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91 [PMID: 20308593]
  25. BMC Syst Biol. 2014 Mar 26;8:37 [PMID: 24669835]
  26. Oncogene. 2008 Apr 7;27(16):2312-9 [PMID: 18391973]
  27. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  28. BMC Bioinformatics. 2016 Oct 6;17(1):410 [PMID: 27716031]
  29. BMC Genomics. 2020 Jan 2;21(1):6 [PMID: 31898477]
  30. Bioinformatics. 2007 Jan 15;23(2):e177-83 [PMID: 17237089]
  31. J Theor Biol. 2003 Jul 7;223(1):1-18 [PMID: 12782112]
  32. J Theor Biol. 2022 Apr 7;538:111025 [PMID: 35085537]
  33. Brief Bioinform. 2021 May 20;22(3): [PMID: 34020546]
  34. Bioinformatics. 2007 Apr 1;23(7):866-74 [PMID: 17267426]
  35. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  36. Bioinformatics. 2020 Jan 15;36(2):578-585 [PMID: 31368481]
  37. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33539514]
  38. Bioinformatics. 2015 Jun 15;31(12):i230-9 [PMID: 26072487]
  39. Nat Biotechnol. 2015 Mar;33(3):269-276 [PMID: 25664528]
  40. BMC Syst Biol. 2018 May 25;12(1):59 [PMID: 29801503]
  41. Int J Data Min Bioinform. 2017;18(3):223-239 [PMID: 29354189]
  42. J Biol Eng. 2019 Sep 18;13:75 [PMID: 31548864]
  43. Biomed Res Int. 2014;2014:428570 [PMID: 24982882]
  44. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):487-98 [PMID: 21464514]
  45. PeerJ Comput Sci. 2021 Mar 4;7:e398 [PMID: 33817044]
  46. Mol Biol Cell. 1998 Dec;9(12):3273-97 [PMID: 9843569]
  47. IEEE Trans Neural Netw. 1994;5(4):537-50 [PMID: 18267827]
  48. PLoS One. 2017 Feb 8;12(2):e0171097 [PMID: 28178334]
  49. Cancer Inform. 2008;6:257-73 [PMID: 19259413]
  50. Sci Rep. 2021 Dec 20;11(1):24209 [PMID: 34930908]
  51. Nucleic Acids Res. 2011 Jan;39(Database issue):D98-105 [PMID: 21051347]
  52. BMC Syst Biol. 2012 Aug 28;6:113 [PMID: 22929591]
  53. J Comput Biol. 2009 Feb;16(2):229-39 [PMID: 19183003]
  54. J Theor Biol. 1973 Dec;42(3):563-85 [PMID: 4588055]
  55. Comput Struct Biotechnol J. 2021 Sep 15;19:5321-5332 [PMID: 34630946]
  56. Bioinformatics. 2014 Jan 1;30(1):131-2 [PMID: 24078712]
  57. Bioinformatics. 2018 Sep 1;34(17):i927-i933 [PMID: 30423074]
  58. Biology (Basel). 2017 Dec 18;6(4): [PMID: 29258225]
  59. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4781-6 [PMID: 15037758]
  60. Nat Commun. 2020 Jul 13;11(1):3493 [PMID: 32661225]
  61. J Theor Biol. 1969 Mar;22(3):437-67 [PMID: 5803332]
  62. Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80 [PMID: 18797474]
  63. PLoS One. 2010 Feb 23;5(2):e9202 [PMID: 20186320]
  64. IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar 04;PP: [PMID: 33661736]
  65. BMC Bioinformatics. 2020 Jul 20;21(1):318 [PMID: 32690031]
  66. PLoS One. 2014 Dec 31;9(12):e115806 [PMID: 25551820]

Word Cloud

Created with Highcharts 10.0.0BooleaninferencenetworksregulatoryapproachesgenemethodsevaluationdescriptionscanpredictivemethodologyNetworkInferencetermsstructuralcorrectnessvalidationprovideinsightinteractionsgenesholdpowereasyunderstandusedsimulateobserveddifferentscenariosreviewfundamentalstate-of-the-artintroducestraightforwardbasedgenerationdatasetsapplicationselectedperformancemeasuresguideselectionbestmethodgivenproblemdemonstrateprocedureREVEALREVerseEngineeringALgorithmBest-FitExtensionMIBNIMutualInformation-basedGABNIGeneticAlgorithm-basedATENAND/ORTreeENsemblealgorithminfersdiscretisedtimeseriesdatatendperformbetterdynamicaccuracyslightlyworsebelieveproposedprovidedguidelineswillhelpresearchersdevelopgoodcapabilitymaintainingbiologicalrelevanceReviewassessmentnetworkDynamicGeneStaticSystemsbiology

Similar Articles

Cited By