The genus : Phylogeny, biodiversity, phytometabolites, and chemodiversity.

Da-Cheng Hao, Yanjun Song, Peigen Xiao, Yi Zhong, Peiling Wu, Lijia Xu
Author Information
  1. Da-Cheng Hao: School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China.
  2. Yanjun Song: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  3. Peigen Xiao: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  4. Yi Zhong: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  5. Peiling Wu: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  6. Lijia Xu: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

The ecologically and economically important genus contains around 40 species and many hybrids and cultivars. The dried capitulum of (CM) Ramat. Tzvel, i.e., , is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of . This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of , i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.

Keywords

References

  1. J Nat Prod. 2018 Feb 23;81(2):378-386 [PMID: 29400471]
  2. Front Pharmacol. 2022 Feb 07;13:809482 [PMID: 35197853]
  3. J Food Sci. 2020 Mar;85(3):618-627 [PMID: 32052442]
  4. Phytochem Anal. 2022 Apr;33(3):373-385 [PMID: 34750870]
  5. Molecules. 2017 Oct 23;22(10): [PMID: 29065520]
  6. Molecules. 2015 Jun 15;20(6):11090-102 [PMID: 26083041]
  7. Molecules. 2020 Feb 23;25(4): [PMID: 32102220]
  8. Pharmazie. 2004 Jul;59(7):565-7 [PMID: 15296097]
  9. Zhongguo Zhong Yao Za Zhi. 2008 Oct;33(19):2207-11 [PMID: 19166008]
  10. J Agric Food Chem. 2012 Dec 26;60(51):12574-83 [PMID: 23214422]
  11. Molecules. 2019 Aug 19;24(16): [PMID: 31430944]
  12. Mol Plant. 2018 Dec 3;11(12):1482-1491 [PMID: 30342096]
  13. Chin Herb Med. 2020 Mar 12;12(2):104-117 [PMID: 36119793]
  14. Zhong Yao Cai. 2010 Dec;33(12):1845-9 [PMID: 21548357]
  15. PeerJ. 2021 Nov 5;9:e12428 [PMID: 34760397]
  16. Molecules. 2022 Feb 25;27(5): [PMID: 35268661]
  17. Plant Mol Biol. 2017 Nov;95(4-5):451-461 [PMID: 29052098]
  18. New Phytol. 2006;171(4):875-86 [PMID: 16918557]
  19. Front Genet. 2021 Feb 11;12:625985 [PMID: 33643389]
  20. Mol Ecol. 2020 Jul;29(14):2513-2516 [PMID: 32497331]
  21. Zhongguo Zhong Yao Za Zhi. 2021 Jan;46(2):281-289 [PMID: 33645113]
  22. Plants (Basel). 2022 Feb 24;11(5): [PMID: 35270074]
  23. BMC Evol Biol. 2002 Sep 26;2:17 [PMID: 12350234]
  24. BMC Complement Altern Med. 2019 Oct 21;19(1):274 [PMID: 31638961]
  25. Zhongguo Zhong Yao Za Zhi. 2007 Feb;32(3):227-31 [PMID: 17432145]
  26. Genome Biol Evol. 2016 Dec 1;8(12):3661-3671 [PMID: 28082602]
  27. Trends Plant Sci. 2020 Dec;25(12):1240-1251 [PMID: 32690362]
  28. Evid Based Complement Alternat Med. 2022 Jan 12;2022:9027727 [PMID: 35069772]
  29. J Nat Med. 2021 Jan;75(1):167-172 [PMID: 32803654]
  30. J Agric Food Chem. 2007 Feb 7;55(3):929-36 [PMID: 17263495]
  31. Zhongguo Zhong Yao Za Zhi. 2006 Jan;31(1):18-21 [PMID: 16548159]
  32. New Phytol. 2014 Feb;201(3):1031-1044 [PMID: 24400906]
  33. Zhongguo Zhong Yao Za Zhi. 2011 May;36(10):1261-5 [PMID: 21837961]
  34. Chem Biodivers. 2019 Jan;16(1):e1800434 [PMID: 30462381]
  35. Zhongguo Zhong Yao Za Zhi. 2005 Nov;30(21):1645-8 [PMID: 16400937]
  36. Food Res Int. 2019 Sep;123:64-74 [PMID: 31285013]
  37. Front Pharmacol. 2021 Oct 08;12:755140 [PMID: 34690786]
  38. Front Chem. 2021 Aug 05;9:689254 [PMID: 34422760]
  39. J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Apr 1;848(2):215-25 [PMID: 17084113]
  40. Zhongguo Zhong Yao Za Zhi. 1999 Sep;24(9):522-5, 573 [PMID: 12205894]
  41. Molecules. 2020 Apr 29;25(9): [PMID: 32365690]
  42. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14083-14088 [PMID: 31209018]
  43. Zhongguo Zhong Yao Za Zhi. 2015 Aug;40(16):3174-8 [PMID: 26790287]
  44. Molecules. 2019 Nov 20;24(23): [PMID: 31756889]
  45. Int J Mol Med. 2020 Apr;45(4):1059-1072 [PMID: 32124957]
  46. Phytomedicine. 2018 May 15;44:247-257 [PMID: 29631807]
  47. Food Chem Toxicol. 2021 Jul;153:112305 [PMID: 34033886]
  48. Planta. 2019 Nov 27;251(1):8 [PMID: 31776674]
  49. Food Res Int. 2019 Feb;116:810-818 [PMID: 30717012]
  50. Nature. 1999 Mar 25;398(6725):299-300 [PMID: 10192331]
  51. Food Sci Nutr. 2019 Dec 16;8(1):620-628 [PMID: 31993185]
  52. Metabolomics. 2019 Aug 26;15(9):118 [PMID: 31451959]
  53. Antioxidants (Basel). 2021 Aug 20;10(8): [PMID: 34439559]
  54. Mol Phylogenet Evol. 2021 Mar;156:107024 [PMID: 33271372]
  55. Food Nutr Res. 2019 Apr 15;63: [PMID: 31024225]
  56. J Chem Ecol. 2004 Mar;30(3):589-606 [PMID: 15139310]
  57. J Cell Physiol. 2019 Aug;234(8):13191-13208 [PMID: 30556589]
  58. Bioorg Chem. 2019 Feb;82:139-144 [PMID: 30321776]
  59. J Agric Food Chem. 2021 Sep 1;69(34):9743-9753 [PMID: 34465092]
  60. Gene. 2015 Mar 1;558(1):41-53 [PMID: 25536164]
  61. Front Genet. 2021 Aug 31;12:716163 [PMID: 34531898]
  62. PLoS One. 2012;7(11):e48970 [PMID: 23133665]
  63. Front Plant Sci. 2021 May 26;12:648026 [PMID: 34122473]
  64. Am J Chin Med. 2020;48(4):871-897 [PMID: 32431180]
  65. Methods Mol Biol. 2019;1917:337-354 [PMID: 30610648]
  66. Genes (Basel). 2020 Jul 30;11(8): [PMID: 32751443]
  67. G3 (Bethesda). 2022 Jan 4;12(1): [PMID: 34849775]
  68. Zhongguo Zhong Yao Za Zhi. 2021 May;46(9):2167-2172 [PMID: 34047117]
  69. Top Curr Chem. 2012;314:73-81 [PMID: 22006239]
  70. Zhongguo Zhong Yao Za Zhi. 2021 Jan;46(2):272-280 [PMID: 33645112]
  71. PeerJ. 2020 Jul 03;8:e9448 [PMID: 32685287]
  72. Curr Pharm Biotechnol. 2023;24(2):279-298 [PMID: 35331107]
  73. Food Chem. 2021 May 15;344:128733 [PMID: 33280963]
  74. Molecules. 2021 Nov 24;26(23): [PMID: 34885694]
  75. Commun Biol. 2021 Oct 7;4(1):1167 [PMID: 34620992]
  76. Front Genet. 2016 Jun 15;7:113 [PMID: 27379163]
  77. Comput Struct Biotechnol J. 2018 Nov 23;16:600-610 [PMID: 30546860]
  78. J Asian Nat Prod Res. 2021 Sep;23(9):877-883 [PMID: 32603195]
  79. FASEB J. 2019 Jun;33(6):6726-6735 [PMID: 30807230]
  80. Food Funct. 2020 Jul 22;11(7):6340-6351 [PMID: 32608438]
  81. Molecules. 2022 Mar 25;27(7): [PMID: 35408512]
  82. J Nat Prod. 2017 Apr 28;80(4):1028-1033 [PMID: 28248102]
  83. Biomed Pharmacother. 2021 Apr;136:111226 [PMID: 33485066]
  84. Planta Med. 2001 Oct;67(7):599-604 [PMID: 11582534]
  85. Nat Prod Res. 2019 Dec;33(24):3582-3586 [PMID: 29897257]
  86. Chin Herb Med. 2021 Aug 11;13(3):299-300 [PMID: 36118925]
  87. Physiol Mol Biol Plants. 2022 Jan;28(1):65-76 [PMID: 35221572]
  88. Nat Prod Res. 2015;29(14):1342-9 [PMID: 25810048]
  89. Plant Sci. 2021 Aug;309:110959 [PMID: 34134850]
  90. Molecules. 2021 May 19;26(10): [PMID: 34069700]
  91. Zhongguo Zhong Yao Za Zhi. 2008 Mar;33(5):526-30 [PMID: 18536375]
  92. Mitochondrial DNA B Resour. 2022 Apr 1;7(4):603-605 [PMID: 35386632]
  93. Phytochemistry. 2021 May;185:112687 [PMID: 33588133]
  94. Zhongguo Zhong Yao Za Zhi. 2019 Sep;44(17):3711-3717 [PMID: 31602943]
  95. J Agric Food Chem. 2007 Jan 24;55(2):273-7 [PMID: 17227053]
  96. Cladistics. 2022 Dec;38(6):663-683 [PMID: 35766338]
  97. J Ethnopharmacol. 2022 Aug 10;294:115336 [PMID: 35568113]
  98. Int J Mol Sci. 2019 Mar 06;20(5): [PMID: 30845784]
  99. Phytomedicine. 2019 Jun;59:152803 [PMID: 31005811]
  100. Int J Mol Sci. 2020 Sep 07;21(18): [PMID: 32906764]

Word Cloud

Created with Highcharts 10.0.0chemodiversitycultivarsCMrelatedbiodiversityspeciesmedicinerelationshipphytometabolitesgenusie2alsoteaphylogeneticgenerareviewtaxonomicgroupswildArtemisiinaecloselyacidspharmacophylogenyChrysanthemumecologicallyeconomicallyimportantcontainsaround40manyhybridsdriedcapitulumRamatTzvelfrequentlyusedtraditionalChineseTCMfolkleast200 yearspopularbeverage000 yearssinceHanDynastyChinaHoweverorigindifferentAsteraceaestillelusivelackcomprehensiveassociationarticleaimsprovidesyntheticsummaryphylogenyfocusingrelativesBasedextensiveliteraturelightmedicinalvaluechrysanthemumgivesuggestionsgenera/speciesfutureapplicationsMiningcontainingsubtribewellminingtherapeuticefficacyutilitieschemodiversity/biodiversitysustainableconservationutilizationresourceseightmainHangjuBojuGongjuChujuHuaijuJijuChuanjuQijudiffergeographicaloriginsprocessingmethodsDifferentoriginatedvarioushybridizationsmultiplemainlycontainedvolatileoilstriterpenesflavonoidsphenolicpolysaccharidesaminoactivitiesantimicrobialanti-viralantioxidantanti-aginganticanceranti-inflammatoryusefulfoodDespiteprogressesgenetic/chemicalrelationshipsamongvarietiesrelevantyetclarifiedthereforerolesomicstechnologyhighlighted:Phylogenymorifoliumphytochemistry

Similar Articles

Cited By