A copper-based metal-organic framework decorated with electrodeposited FeO nanoparticles for electrochemical nitrite sensing.

R K A Amali, H N Lim, I Ibrahim, Z Zainal, S A A Ahmad
Author Information
  1. R K A Amali: Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
  2. H N Lim: Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. hongngee@upm.edu.my.
  3. I Ibrahim: Foundry of Reticular Materials of Sustainably Laboratory & Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
  4. Z Zainal: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
  5. S A A Ahmad: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

Abstract

An amperometric nitrite sensor is reported based on a screen-printed carbon electrode (SPCE) modified with copper(II)-benzene-1,4-dicarboxylate (Cu-BDC) frameworks and iron(III) oxide nanoparticles (FeO NPs). First, copper(I) oxide (CuO) nanocubes were synthesized, followed by a solvothermal reaction between CuO and HBDC to form square plate-like Cu-BDC frameworks. Then, FeO NPs were electrodeposited on Cu-BDC frameworks using a potentiostatic method. The FeO@Cu-BDC nanocomposite benefits from high conductivity and large active surface area, offering excellent electrocatalytic activity for nitrite oxidation. Under optimal amperometric conditions (0.55 V vs. Ag/AgCl), the sensor has a linear range of 1 to 2000 µM with a detection limit of 0.074 µM (S/N = 3) and sensitivity of 220.59 µA mM cm. The sensor also provides good selectivity and reproducibility (RSD = 1.91%, n = 5). Furthermore, the sensor exhibits long-term stability, retaining 91.4% of its original current after 4 weeks of storage at room temperature. Finally, assessing nitrite in tap and mineral water samples revealed that the FeO@Cu-BDC/SPCE has a promising prospect in amperometric nitrite detection.

Keywords

References

  1. He B, Yan D (2019) Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 103:70–77. https://doi.org/10.1016/j.foodcont.2019.04.001 [DOI: 10.1016/j.foodcont.2019.04.001]
  2. Li X, Ping J, Ying Y (2019) Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC - Trends Anal Chem 113:1–12. https://doi.org/10.1016/j.trac.2019.01.008 [DOI: 10.1016/j.trac.2019.01.008]
  3. Li G, Xia Y, Tian Y et al (2019) Review—recent developments on graphene-based electrochemical sensors toward nitrite. J Electrochem Soc 166:B881–B895. https://doi.org/10.1149/2.0171912jes [DOI: 10.1149/2.0171912jes]
  4. Mao Y, Bao Y, Dx H, Zhao B (2018) Research progress on nitrite electrochemical sensor. Chinese J Anal Chem 46:147–155. https://doi.org/10.1016/S1872-2040(17)61066-1 [DOI: 10.1016/S1872-2040(17)61066-1]
  5. World Health Organization (2011) Guidelines for drinking-water quality, fourth edition. http://www.who.int . Accessed 7 Dec 2020
  6. EFSA (2017) Nitrites and nitrates added to food. In: Efsa Explain. Risk Assess. https://www.efsa.europa.eu/en/corporate/pub/nitritesandnitrates170614 . Accessed 10 May 2022
  7. Abou-Melha KS (2020) Analytical chemistry optical chemosensor for spectrophotometric determination of nitrite in wastewater. ChemistrySelect 5:6216–6223. https://doi.org/10.1002/slct.202001366 [DOI: 10.1002/slct.202001366]
  8. El hani O, Karrat A, Digua K, Amine A (2022) Development of a simplified spectrophotometric method for nitrite determination in water samples. Spectrochim Acta - Part A Mol Biomol Spectrosc 267:120574. https://doi.org/10.1016/j.saa.2021.120574 [DOI: 10.1016/j.saa.2021.120574]
  9. Hatta M, Ruzicka J (Jarda), Measures CI (2020) The performance of a new linear light path flow cell is compared with a liquid core waveguide and the linear cell is used for spectrophotometric determination of nitrite in sea water at nanomolar concentrations. Talanta 219:121240. https://doi.org/10.1016/j.talanta.2020.121240 [DOI: 10.1016/j.talanta.2020.121240]
  10. Huang KJ, Wang H, Guo YH et al (2006) Spectrofluorimetric determination of trace nitrite in food products with a new fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene. Talanta 69:73–78. https://doi.org/10.1016/j.talanta.2005.08.062 [DOI: 10.1016/j.talanta.2005.08.062]
  11. Gan L, Su Q, Chen Z, Yang X (2020) Exploration of pH-responsive carbon dots for detecting nitrite and ascorbic acid. Appl Surf Sci 530:147269. https://doi.org/10.1016/j.apsusc.2020.147269 [DOI: 10.1016/j.apsusc.2020.147269]
  12. Zhang J, Yang J, Chen J et al (2022) A novel propylene glycol alginate gel based colorimetric tube for rapid detection of nitrite in pickled vegetables. Food Chem 373:131678. https://doi.org/10.1016/j.foodchem.2021.131678 [DOI: 10.1016/j.foodchem.2021.131678]
  13. Kodamatani H, Iwaya Y, Saga M et al (2017) Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Anal Chim Acta 952:50–58. https://doi.org/10.1016/j.aca.2016.11.045 [DOI: 10.1016/j.aca.2016.11.045]
  14. Arul P, Gowthaman NSK, John SA et al (2020) Ultrasonic assisted synthesis of size-controlled Cu-metal-organic framework decorated graphene oxide composite: sustainable electrocatalyst for the trace-level determination of nitrite in environmental water samples. ACS Omega 5:14242–14253. https://doi.org/10.1021/acsomega.9b03829 [DOI: 10.1021/acsomega.9b03829]
  15. Wang YC, Chen YC, Chuang WS et al (2020) Pore-confined silver nanoparticles in a porphyrinic metal-organic framework for electrochemical nitrite detection. ACS Appl Nano Mater 3:9440–9448. https://doi.org/10.1021/acsanm.0c02052 [DOI: 10.1021/acsanm.0c02052]
  16. Lei H, Zhu H, Sun S et al (2021) Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta 365:137375. https://doi.org/10.1016/j.electacta.2020.137375 [DOI: 10.1016/j.electacta.2020.137375]
  17. Liu L, Ma Q, Liu Z et al (2014) Detection of trace nitrite in waters using a QDs-based chemiluminescence analysis system. Anal Bioanal Chem 406:879–886. https://doi.org/10.1007/s00216-013-7490-0 [DOI: 10.1007/s00216-013-7490-0]
  18. Tajik S, Orooji Y, Karimi F et al (2021) High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J Food Meas Charact 15:4617–4622. https://doi.org/10.1007/s11694-021-01027-0 [DOI: 10.1007/s11694-021-01027-0]
  19. Beitollahi H, Shahsavari M, Sheikhshoaie I et al (2022) Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 161:112824. https://doi.org/10.1016/j.fct.2022.112824 [DOI: 10.1016/j.fct.2022.112824]
  20. Yang Z, Zhong Y, Zhou X et al (2022) Metal-organic framework-based sensors for nitrite detection: a short review. J Food Meas Charact. https://doi.org/10.1007/s11694-021-01270-5 [DOI: 10.1007/s11694-021-01270-5]
  21. Duan J, Li Y, Pan Y et al (2019) Metal-organic framework nanosheets: an emerging family of multifunctional 2D materials. Coord Chem Rev 395:25–45. https://doi.org/10.1016/j.ccr.2019.05.018 [DOI: 10.1016/j.ccr.2019.05.018]
  22. Chuang CH, Kung CW (2020) Metal–organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis 32:1885–1895. https://doi.org/10.1002/elan.202060111 [DOI: 10.1002/elan.202060111]
  23. Song Y, Yang Y, Mo S et al (2022) Fast construction of (FeO)@Ni-MOF heterostructure nanosheets as highly active catalyst for water oxidation. J Alloys Compd 892:162149. https://doi.org/10.1016/j.jallcom.2021.162149 [DOI: 10.1016/j.jallcom.2021.162149]
  24. Sun X, Gao G, Yan D, Feng C (2017) Synthesis and electrochemical properties of FeO@MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci 405:52–59. https://doi.org/10.1016/j.apsusc.2017.01.247 [DOI: 10.1016/j.apsusc.2017.01.247]
  25. Radhakrishnan S, Krishnamoorthy K, Sekar C et al (2014) A highly sensitive electrochemical sensor for nitrite detection based on FeO nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148–149:22–28. https://doi.org/10.1016/j.apcatb.2013.10.044 [DOI: 10.1016/j.apcatb.2013.10.044]
  26. Wang S, Liu M, He S et al (2018) Protonated carbon nitride induced hierarchically ordered FeO/H–CN/rGO architecture with enhanced electrochemical sensing of nitrite. Sens Actuators B Chem 260:490–498. https://doi.org/10.1016/j.snb.2018.01.073 [DOI: 10.1016/j.snb.2018.01.073]
  27. Zhao Z, Xia Z, Liu C et al (2017) Green synthesis of Pd/FeO composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154. https://doi.org/10.1016/j.electacta.2017.09.185 [DOI: 10.1016/j.electacta.2017.09.185]
  28. Zhan G, Fan L, Zhao F et al (2019) Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv Funct Mater 29:1–13. https://doi.org/10.1002/adfm.201806720 [DOI: 10.1002/adfm.201806720]
  29. Amali RKA, Lim HN, Ibrahim I et al (2022) Silver nanoparticles-loaded copper (II)-terephthalate framework nanocomposite as a screen-printed carbon electrode modifier for amperometric nitrate detection. J Electroanal Chem 918:116440. https://doi.org/10.1016/j.jelechem.2022.116440 [DOI: 10.1016/j.jelechem.2022.116440]
  30. Li X, Zhou H, Qi F et al (2018) Three hidden talents in one framework: a terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J Mater Chem B 6:6207–6211. https://doi.org/10.1039/C8TB02167H [DOI: 10.1039/C8TB02167H]
  31. Wang Y, Cao W, Wang L et al (2018) Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-018-2857-8 [DOI: 10.1007/s00604-018-2857-8]
  32. Arul P, Huang ST, Mani V, Hu YC (2021) Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: a dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 381:138280. https://doi.org/10.1016/j.electacta.2021.138280 [DOI: 10.1016/j.electacta.2021.138280]
  33. Domenech A, Garcia H, Domenech-Carbo MT, Llabres-i-Xamena F (2007) Electrochemistry of metal-organic frameworks: a description from the voltammetry of microparticles approach. J Phys Chem C 111:13701–13711. https://doi.org/10.1021/jp073458x
  34. Kornii A, Lisnyak VV, Grishchenko L, Tananaiko O (2022) Synthesis and characterization of hybrid silica/FeO-carbon nanoparticles films electrodeposited onto planar electrodes. Electrochim Acta 409:139938. https://doi.org/10.1016/j.electacta.2022.139938 [DOI: 10.1016/j.electacta.2022.139938]
  35. Suma BP, Pandurangappa M (2020) Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. J Solid State Electrochem 24:69–79. https://doi.org/10.1007/s10008-019-04454-8 [DOI: 10.1007/s10008-019-04454-8]
  36. Cassani MC, Castagnoli R, Gambassi F et al (2021) A Cu(II)-MOF based on a propargyl carbamate-functionalized isophthalate ligand as nitrite electrochemical sensor. Sensors 21. https://doi.org/10.3390/s21144922
  37. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuators B Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036 [DOI: 10.1016/j.snb.2018.10.036]
  38. Yuan B, Zhang J, Zhang R et al (2016) Cu-based metal-organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sens Actuators B Chem 222:632–637. https://doi.org/10.1016/j.snb.2015.08.100 [DOI: 10.1016/j.snb.2015.08.100]

Grants

  1. FRGS/1/2021/STG05/UPM/01/1/Ministry of Higher Education, Malaysia

MeSH Term

Carbon
Copper
Ferric Compounds
Metal-Organic Frameworks
Nanoparticles
Nitrites
Oxides
Reproducibility of Results

Chemicals

Ferric Compounds
Metal-Organic Frameworks
Nitrites
Oxides
ferric oxide
Carbon
Copper

Word Cloud

Created with Highcharts 10.0.0nitritesensoramperometricCu-BDCframeworksFeOcopperoxidenanoparticlesNPsCuOelectrodeposited0detectionframeworkreportedbasedscreen-printedcarbonelectrodeSPCEmodifiedII-benzene-14-dicarboxylateironIIIFirstnanocubessynthesizedfollowedsolvothermalreactionHBDCformsquareplate-likeusingpotentiostaticmethodFeO@Cu-BDCnanocompositebenefitshighconductivitylargeactivesurfaceareaofferingexcellentelectrocatalyticactivityoxidationoptimalconditions55 VvsAg/AgCla linearrange12000 µMlimit074 µMS/N = 3sensitivity22059µAmM cmalsoprovidesgoodselectivityreproducibilityRSD = 191%n = 5Furthermoreexhibitslong-termstabilityretaining914%originalcurrent4 weeksstorageroomtemperatureFinallyassessingtapmineralwatersamplesrevealedFeO@Cu-BDC/SPCEpromisingprospectcopper-basedmetal-organicdecoratedelectrochemicalsensingAmperometryCopper-basedmetal–organicElectrochemicalFe2O3nanoparticleNitrite

Similar Articles

Cited By