Exolaccase-boosted humification for agricultural applications.

Hailing Chu, Shunyao Li, Kai Sun, Youbin Si, Yanzheng Gao
Author Information
  1. Hailing Chu: Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036 Anhui, China.
  2. Shunyao Li: Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601 Anhui, China.
  3. Kai Sun: Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036 Anhui, China.
  4. Youbin Si: Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036 Anhui, China.
  5. Yanzheng Gao: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China.

Abstract

Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification.

Keywords

References

  1. J Environ Manage. 2021 Oct 15;296:113340 [PMID: 34328868]
  2. J Hazard Mater. 2021 Aug 15;416:125738 [PMID: 33836326]
  3. J Hazard Mater. 2018 Sep 5;357:498-505 [PMID: 30008382]
  4. J Hazard Mater. 2021 Jun 15;412:125197 [PMID: 33540263]
  5. Biotechnol Adv. 2018 Jul - Aug;36(4):1255-1273 [PMID: 29673972]
  6. Chem Rev. 2015 Dec 23;115(24):13362-407 [PMID: 26654466]
  7. Environ Res. 2022 Apr 1;205:112189 [PMID: 34627801]
  8. Sci Total Environ. 2020 Apr 20;714:136572 [PMID: 31986384]
  9. Biotechnol Adv. 2022 Mar-Apr;55:107912 [PMID: 35041862]
  10. J Agric Food Chem. 2017 Feb 15;65(6):1167-1177 [PMID: 28112921]
  11. Int J Phytoremediation. 2018 Jun 7;20(7):692-698 [PMID: 29723048]
  12. Bioresour Technol. 2012 Jan;104:497-502 [PMID: 22130079]
  13. Toxics. 2021 Feb 25;9(3): [PMID: 33668829]
  14. Environ Pollut. 2021 Jan 6;273:116448 [PMID: 33486256]
  15. Sci Total Environ. 2019 Oct 10;686:1140-1151 [PMID: 31412510]
  16. Trends Biotechnol. 2019 Jul;37(7):683-686 [PMID: 30926142]
  17. Front Plant Sci. 2019 Jun 17;10:736 [PMID: 31263470]
  18. Sci Total Environ. 2022 Jan 1;802:150005 [PMID: 34525729]
  19. Biotechnol Adv. 2019 Dec;37(8):107416 [PMID: 31323257]
  20. Environ Sci Technol. 2019 Jul 2;53(13):7410-7418 [PMID: 31136159]
  21. Nat Nanotechnol. 2021 Feb;16(2):197-205 [PMID: 33257897]
  22. Chemosphere. 2018 Jul;202:420-437 [PMID: 29579677]
  23. J Control Release. 2021 Nov 10;339:321-334 [PMID: 34626724]
  24. Bioresour Technol. 2021 Dec;341:125906 [PMID: 34523564]
  25. Chem Soc Rev. 2021 May 24;50(10):6221-6239 [PMID: 34027951]
  26. Crit Rev Biotechnol. 2021 Nov;41(7):969-993 [PMID: 33818232]
  27. Water Res. 2019 Dec 1;166:115040 [PMID: 31505307]
  28. Microorganisms. 2020 Apr 30;8(5): [PMID: 32365784]
  29. Biotechnol Adv. 2003 Dec;22(1-2):161-87 [PMID: 14623049]
  30. Environ Pollut. 2018 Apr;235:121-128 [PMID: 29276958]
  31. Sci Adv. 2015 Feb 20;1(1):e1400039 [PMID: 26601127]
  32. Front Plant Sci. 2018 Mar 13;9:263 [PMID: 29593751]
  33. Sci Total Environ. 2021 Feb 1;754:142150 [PMID: 32920404]
  34. Water Res. 2021 Oct 15;205:117664 [PMID: 34583205]
  35. Front Plant Sci. 2020 Apr 28;11:493 [PMID: 32411165]
  36. Sci Total Environ. 2019 Apr 20;662:501-510 [PMID: 30695750]
  37. Sci Total Environ. 2022 Apr 10;816:151572 [PMID: 34774628]
  38. Bioresour Technol. 2021 Oct;338:125546 [PMID: 34274584]
  39. Chemosphere. 2016 Feb;145:394-401 [PMID: 26692517]
  40. Biotechnol Adv. 2013 Dec;31(8):1808-25 [PMID: 22398306]
  41. J Hazard Mater. 2020 Nov 15;399:123036 [PMID: 32526444]
  42. Bioresour Technol. 2022 Feb;346:126577 [PMID: 34923079]
  43. Research (Wash D C). 2022 Jan 12;2022:9857374 [PMID: 35098139]
  44. ACS Omega. 2018 Jul 31;3(7):7441-7453 [PMID: 30087914]
  45. Environ Sci Technol. 2022 May 31;: [PMID: 35638921]
  46. Environ Sci Technol. 2015 Jun 2;49(11):6457-65 [PMID: 25961507]
  47. Chemosphere. 2020 Oct;256:127110 [PMID: 32464361]
  48. Nat Nanotechnol. 2018 Aug;13(8):642-650 [PMID: 30082806]
  49. iScience. 2021 May 24;24(6):102647 [PMID: 34466779]
  50. Trends Biotechnol. 2022 Sep;40(9):1061-1072 [PMID: 35339288]
  51. Science. 2007 Oct 26;318(5850):626-9 [PMID: 17962559]
  52. Adv Sci (Weinh). 2020 Jan 21;7(5):1902992 [PMID: 32154079]
  53. Sci Total Environ. 2018 Sep 1;635:1036-1046 [PMID: 29710559]
  54. Sci Total Environ. 2020 Jul 10;725:138409 [PMID: 32464747]
  55. iScience. 2021 Mar 31;24(4):102378 [PMID: 33948559]
  56. Bioresour Technol. 2019 Nov;291:121882 [PMID: 31377512]
  57. J Hazard Mater. 2022 Aug 15;436:129269 [PMID: 35739784]
  58. Sci Total Environ. 2021 May 20;770:144561 [PMID: 33736422]
  59. Environ Pollut. 2019 Jan;244:747-756 [PMID: 30384080]
  60. Sci Total Environ. 2022 Jul 15;830:154783 [PMID: 35339549]
  61. Environ Sci Technol. 2006 Feb 1;40(3):666-72 [PMID: 16509301]
  62. J Hazard Mater. 2022 Jan 15;422:126842 [PMID: 34416687]
  63. Environ Sci Technol. 2021 Sep 21;55(18):12136-12152 [PMID: 34469151]
  64. Trends Biotechnol. 2005 Mar;23(3):135-42 [PMID: 15734556]
  65. Nature. 2005 Jun 30;435(7046):1179-86 [PMID: 15988514]
  66. Environ Res. 2022 Mar;204(Pt A):111916 [PMID: 34428450]
  67. Environ Sci Technol. 2014 Aug 19;48(16):8946-62 [PMID: 25082801]
  68. Molecules. 2021 Apr 13;26(8): [PMID: 33924700]

Word Cloud

Created with Highcharts 10.0.0humificationH-LPsphenolicagriculturalartificialscienceExolaccase-boosteddetoxificationhumic-likeproductionreviewexolaccase-boostedapplicationssoilAgriculturalGloballycontaminantsposedconsiderablethreatagro-ecosystemsmayadmirablestrategycreatingmultifunctionalproductsNonethelesspotentialapplicabilityformedstilloverlookeddescribesimmobilizedexolaccase-enabledeliminatingpollutantsproducingsimilaritiesdifferencesnaturalhumicsubstancesHSschemicalpropertiescomparedparticularagronomiceffectsreproduciblehighlightedbasissummarygranulationprocessemployedpreparegranularorganicfertilizerscanappliedfieldcropsmechanicalside-deepfertilizationFinallychallengesperspectivespracticalalsodiscussedfirststeptowardprofoundunderstandingimprovementSoil

Similar Articles

Cited By