Proof-Reading Thioesterase Boosts Activity of Engineered Nonribosomal Peptide Synthetase.

Farzaneh Pourmasoumi, Sayantan De, Huiyun Peng, Felix Trottmann, Christian Hertweck, Hajo Kries
Author Information
  1. Farzaneh Pourmasoumi: Independent Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany.
  2. Sayantan De: Independent Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany. ORCID
  3. Huiyun Peng: Independent Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany.
  4. Felix Trottmann: Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany.
  5. Christian Hertweck: Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany.
  6. Hajo Kries: Independent Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI Jena), Beutenbergstr. 11a, 07745 Jena, Germany. ORCID

Abstract

Nonribosomal peptide synthetases (NRPSs) are a vast source of valuable natural products, and re-engineering them is an attractive path toward structurally diversified active compounds. NRPS engineering often requires heterologous expression, which is hindered by the enormous size of NRPS proteins. Protein splitting and docking domain insertion have been proposed as a strategy to overcome this limitation. Here, we have applied the splitting strategy to the gramicidin S NRPS: Despite better production of the split proteins, gramicidin S production almost ceased. However, the addition of type II thioesterase GrsT boosted production. GrsT is an enzyme encoded in the gramicidin S biosynthetic gene cluster that we have produced and characterized for this purpose. We attribute the activity enhancement to the removal of a stalled intermediate from the split NRPS that is formed due to misinitiation. These results highlight type II thioesterases as useful tools for NRPS engineering.

References

  1. Mol Biol Evol. 2021 May 4;38(5):2116-2130 [PMID: 33480992]
  2. J Antimicrob Chemother. 2007 Dec;60(6):1206-15 [PMID: 17878146]
  3. Appl Microbiol Biotechnol. 2014 Jan;98(2):591-601 [PMID: 24419900]
  4. Biochemistry. 2000 May 16;39(19):5775-87 [PMID: 10801328]
  5. Chem Sci. 2019 Aug 29;10(41):9466-9482 [PMID: 32055321]
  6. Biochemistry. 2001 May 8;40(18):5329-37 [PMID: 11330995]
  7. Mol Microbiol. 1992 Feb;6(4):529-46 [PMID: 1560782]
  8. J Bacteriol. 1989 Oct;171(10):5422-9 [PMID: 2477357]
  9. Chem Biol. 2015 May 21;22(5):640-8 [PMID: 26000750]
  10. J Biotechnol. 2015 Jan 10;193:16-22 [PMID: 25449019]
  11. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  12. J Ind Microbiol Biotechnol. 2018 Jul;45(7):635-649 [PMID: 29288438]
  13. Metab Eng. 2020 Jul;60:37-44 [PMID: 32224263]
  14. Nat Prod Rep. 2019 Sep 1;36(9):1249-1261 [PMID: 31259995]
  15. J Biol Chem. 2018 Dec 21;293(51):19572-19585 [PMID: 30355735]
  16. Nat Chem. 2018 Mar;10(3):282-287 [PMID: 29461527]
  17. Chembiochem. 2004 Sep 6;5(9):1290-3 [PMID: 15368584]
  18. Curr Opin Microbiol. 2019 Oct;51:72-80 [PMID: 31733401]
  19. Nat Prod Rep. 2018 Nov 14;35(11):1210-1228 [PMID: 30069573]
  20. Nat Chem. 2019 Jul;11(7):653-661 [PMID: 31182822]
  21. Chem Sci. 2019 Dec 4;10(48):10979-10990 [PMID: 32953002]
  22. Nat Commun. 2022 Jan 10;13(1):62 [PMID: 35013184]
  23. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14083-8 [PMID: 12384573]
  24. Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13463-13467 [PMID: 32329545]
  25. Biochemistry. 2006 Oct 24;45(42):12756-66 [PMID: 17042494]
  26. Appl Microbiol Biotechnol. 2014 Sep;98(18):7735-46 [PMID: 25081554]
  27. Eur J Biochem. 2004 Apr;271(8):1536-45 [PMID: 15066179]
  28. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10105-8 [PMID: 25081643]
  29. Nat Commun. 2021 Nov 25;12(1):6872 [PMID: 34824225]
  30. Mol Pharm. 2008 Mar-Apr;5(2):191-211 [PMID: 18217713]
  31. Eur J Biochem. 2002 Jan;269(2):620-9 [PMID: 11856321]
  32. J Biol Chem. 2009 Feb 20;284(8):5021-9 [PMID: 19103602]
  33. Cell Chem Biol. 2021 Feb 18;28(2):221-227.e7 [PMID: 33238159]
  34. Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3770-3821 [PMID: 28323366]

MeSH Term

Biological Products
Gramicidin
Multigene Family
Peptide Synthases

Chemicals

Biological Products
Gramicidin
Peptide Synthases
non-ribosomal peptide synthase

Word Cloud

Created with Highcharts 10.0.0NRPSgramicidinSproductionNonribosomalengineeringproteinssplittingstrategysplittypeIIGrsTpeptidesynthetasesNRPSsvastsourcevaluablenaturalproductsre-engineeringattractivepathtowardstructurallydiversifiedactivecompoundsoftenrequiresheterologousexpressionhinderedenormoussizeProteindockingdomaininsertionproposedovercomelimitationappliedNRPS:DespitebetteralmostceasedHoweveradditionthioesteraseboostedenzymeencodedbiosyntheticgeneclusterproducedcharacterizedpurposeattributeactivityenhancementremovalstalledintermediateformedduemisinitiationresultshighlightthioesterasesusefultoolsProof-ReadingThioesteraseBoostsActivityEngineeredPeptideSynthetase

Similar Articles

Cited By (6)