Coherent anti-Stokes Raman scattering cell imaging and segmentation with unsupervised data analysis.

Damien Boildieu, Tiffany Guerenne-Del Ben, Ludovic Duponchel, Vincent Sol, Jean-Michel Petit, Éric Champion, Hideaki Kano, David Helbert, Amandine Magnaudeix, Philippe Leproux, Philippe Carré
Author Information
  1. Damien Boildieu: University of Limoges, CNRS, XLIM, UMR 7252, Limoges, France.
  2. Tiffany Guerenne-Del Ben: University of Limoges, PEIRENE, UR 22722, Limoges, France.
  3. Ludovic Duponchel: University of Lille, CNRS, UMR 8516, LASIRE - Laboratoire de Spectroscopie Pour Les Interactions, La Réactivité et L'Environnement, Lille, France.
  4. Vincent Sol: University of Limoges, PEIRENE, UR 22722, Limoges, France.
  5. Jean-Michel Petit: University of Limoges, PEIRENE, UR 22722, Limoges, France.
  6. Éric Champion: University of Limoges, CNRS, Institut de Recherche sur Les Céramiques, UMR 7315, Limoges, France.
  7. Hideaki Kano: Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan.
  8. David Helbert: University of Poitiers, CNRS, XLIM, UMR 7252, Poitiers, France.
  9. Amandine Magnaudeix: University of Limoges, CNRS, Institut de Recherche sur Les Céramiques, UMR 7315, Limoges, France.
  10. Philippe Leproux: University of Limoges, CNRS, XLIM, UMR 7252, Limoges, France.
  11. Philippe Carré: University of Poitiers, CNRS, XLIM, UMR 7252, Poitiers, France.

Abstract

Coherent Raman imaging has been extensively applied to live-cell imaging in the last 2 decades, allowing to probe the intracellular lipid, protein, nucleic acid, and water content with a high-acquisition rate and sensitivity. In this context, multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy using sub-nanosecond laser pulses is now recognized as a mature and straightforward technology for label-free bioimaging, offering the high spectral resolution of conventional Raman spectroscopy with reduced acquisition time. Here, we introduce the combination of the MCARS imaging technique with unsupervised data analysis based on multivariate curve resolution (MCR). The MCR process is implemented under the classical signal non-negativity constraint and, even more originally, under a new spatial constraint based on cell segmentation. We thus introduce a new methodology for hyperspectral cell imaging and segmentation, based on a simple, unsupervised workflow without any spectrum-to-spectrum phase retrieval computation. We first assess the robustness of our approach by considering cells of different types, namely, from the human HEK293 and murine C2C12 lines. To evaluate its applicability over a broader range, we then study HEK293 cells in different physiological states and experimental situations. Specifically, we compare an interphasic cell with a mitotic (prophase) one. We also present a comparison between a fixed cell and a living cell, in order to visualize the potential changes induced by the fixation protocol in cellular architecture. Next, with the aim of assessing more precisely the sensitivity of our approach, we study HEK293 living cells overexpressing tropomyosin-related kinase B (TrkB), a cancer-related membrane receptor, depending on the presence of its ligand, brain-derived neurotrophic factor (BDNF). Finally, the segmentation capability of the approach is evaluated in the case of a single cell and also by considering cell clusters of various sizes.

Keywords

References

  1. Analyst. 2021 Feb 21;146(4):1163-1168 [PMID: 33398319]
  2. Sci Rep. 2015 Jun 16;5:11358 [PMID: 26079396]
  3. Integr Biol (Camb). 2015 Apr;7(4):467-76 [PMID: 25804837]
  4. Methods Cell Biol. 2008;89:275-308 [PMID: 19118679]
  5. J Phys Chem A. 2019 May 2;123(17):3928-3934 [PMID: 30957999]
  6. Nat Protoc. 2013 Apr;8(4):677-92 [PMID: 23471112]
  7. Cell Death Dis. 2021 Nov 23;12(12):1102 [PMID: 34815388]
  8. Tissue Eng Part C Methods. 2014 Jul;20(7):562-9 [PMID: 24224876]
  9. Biophys J. 2010 Oct 20;99(8):2695-704 [PMID: 20959111]
  10. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  11. Sci Rep. 2018 Feb 5;8(1):2396 [PMID: 29402966]
  12. Biophys J. 2012 Jan 18;102(2):360-8 [PMID: 22339873]
  13. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  14. Biomed Opt Express. 2017 Dec 18;9(1):245-253 [PMID: 29359100]
  15. J Biol Chem. 2015 Oct 30;290(44):26404-11 [PMID: 26354429]
  16. J Am Soc Nephrol. 2019 Oct;30(10):1968-1979 [PMID: 31488607]
  17. Sci Rep. 2019 Sep 25;9(1):13862 [PMID: 31554897]
  18. Anal Chim Acta. 2021 Feb 8;1145:59-78 [PMID: 33453882]
  19. IEEE Trans Image Process. 2005 Sep;14(9):1396-410 [PMID: 16190474]
  20. Nano Converg. 2017;4(1):5 [PMID: 28386525]
  21. Opt Express. 2020 Jul 6;28(14):21002-21024 [PMID: 32680149]
  22. Nat Rev Mol Cell Biol. 2020 Mar;21(3):151-166 [PMID: 32034394]
  23. IEEE Trans Med Imaging. 2013 Jun;32(6):995-1006 [PMID: 23372077]
  24. Biophys J. 2014 May 6;106(9):1910-20 [PMID: 24806923]
  25. IEEE Trans Med Imaging. 2020 Nov;39(11):3679-3690 [PMID: 32746113]
  26. Anal Chem. 2013 Nov 19;85(22):10820-8 [PMID: 24099603]
  27. Analyst. 2016 Jun 21;141(12):3590-600 [PMID: 27072718]
  28. Opt Lett. 2004 Dec 1;29(23):2701-3 [PMID: 15605477]
  29. J Res Natl Inst Stand Technol. 2019 Jun 24;124:1-10 [PMID: 34877179]
  30. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  31. Anal Chem. 2013 Jan 2;85(1):98-106 [PMID: 23198914]
  32. Sci Rep. 2020 Oct 7;10(1):16749 [PMID: 33028922]
  33. Opt Express. 2020 Jul 6;28(14):20422-20437 [PMID: 32680102]
  34. J Phys Chem Lett. 2015 Jul 2;6(13):2449-51 [PMID: 26266717]
  35. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11624-9 [PMID: 26324899]
  36. Opt Express. 2006 Apr 17;14(8):3622-30 [PMID: 19516509]
  37. Appl Spectrosc. 2010 Aug;64(8):871-87 [PMID: 20719050]
  38. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3): [PMID: 21106648]
  39. J Biomed Opt. 2011 Feb;16(2):021105 [PMID: 21361668]
  40. Anal Chim Acta. 2019 Jul 25;1062:47-59 [PMID: 30947995]

Word Cloud

Created with Highcharts 10.0.0cellimagingRamansegmentationunsupervisedcoherentanti-StokesscatteringresolutiondataanalysisbasedapproachcellsHEK293CoherentsensitivityMCARSlabel-freeintroducemultivariatecurveMCRconstraintnewconsideringdifferentstudyalsolivingextensivelyappliedlive-celllast2decadesallowingprobeintracellularlipidproteinnucleicacidwatercontenthigh-acquisitionratecontextmultiplexmicrospectroscopyusingsub-nanosecondlaserpulsesnowrecognizedmaturestraightforwardtechnologybioimagingofferinghighspectralconventionalspectroscopyreducedacquisitiontimecombinationtechniqueprocessimplementedclassicalsignalnon-negativityevenoriginallyspatialthusmethodologyhyperspectralsimpleworkflowwithoutspectrum-to-spectrumphaseretrievalcomputationfirstassessrobustnesstypesnamelyhumanmurineC2C12linesevaluateapplicabilitybroaderrangephysiologicalstatesexperimentalsituationsSpecificallycompareinterphasicmitoticprophaseonepresentcomparisonfixedordervisualizepotentialchangesinducedfixationprotocolcellulararchitectureNextaimassessingpreciselyoverexpressingtropomyosin-relatedkinaseBTrkBcancer-relatedmembranereceptordependingpresenceligandbrain-derivedneurotrophicfactorBDNFFinallycapabilityevaluatedcasesingleclustersvarioussizessupercontinuum

Similar Articles

Cited By