Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes.

Michael P Thorgersen, Gerrit J Schut, Farris L Poole, Dominik K Haja, Saisuki Putumbaka, Harriet I Mycroft, Willem J de Vries, Michael W W Adams
Author Information
  1. Michael P Thorgersen: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  2. Gerrit J Schut: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  3. Farris L Poole: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  4. Dominik K Haja: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  5. Saisuki Putumbaka: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  6. Harriet I Mycroft: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  7. Willem J de Vries: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
  8. Michael W W Adams: Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.

Abstract

strain phR is an obligately aerobic microbe that was isolated from human feces. Here, we show that it readily takes up tungsten (W), a metal previously associated only with anaerobes. The W is incorporated into an oxidoreductase enzyme (BmWOR) that was purified from native biomass. BmWOR consists of a single 65 kDa subunit and contains a single W-pyranopterin cofactor and a single [4Fe-4S] cluster. It exhibited high aldehyde-oxidizing activity with very high affinities (apparent K < 6 μM) for aldehydes common in the human gut and in cooked foods, including furfural, propionaldehyde, benzaldehyde and tolualdehyde, suggesting that BmWOR plays a key role in their detoxification. converted added furfural to furoic acid when grown in the presence of W, but not in the presence of the analogous element molybdenum. ferredoxin (BmFd) served as the electron acceptor (apparent K < 5 μM) for BmWOR suggesting it is the physiological electron carrier. Genome analysis revealed a Fd-dependent rather than NADH-dependent Complex I, suggesting that WOR not only serves a detoxification role but its aldehyde substrates could also serve as a source of energy. BmWOR is the first tungstoenzyme and the first member of the WOR family to be obtained from a strictly aerobic microorganism. Remarkably, BmWOR oxidized furfural in the presence of air (21% O, v/v) but only if BmFd was also present. BmWOR is the first characterized member of the Clade 83 WORs, which are predominantly found in extremely halophilic and aerobic archaea (Clade 83A), with many isolated from food sources, while the remaining bacterial members (Clade 83B) include both aerobes and anaerobes. The potential advantages for microbes found in foods and involved in human gut health that harbor O-resistant WORs, including in and based-probiotics, are discussed.

Keywords

References

  1. Biomed Res Int. 2018 Aug 27;2018:1829632 [PMID: 30225247]
  2. Science. 2019 Jan 18;363(6424):257-260 [PMID: 30573545]
  3. Eur J Biochem. 1989 Sep 1;184(1):89-96 [PMID: 2550230]
  4. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  5. Adv Biochem Eng Biotechnol. 1998;61:117-53 [PMID: 9670799]
  6. J Bacteriol. 1999 Feb;181(4):1171-80 [PMID: 9973343]
  7. Front Microbiol. 2019 Jan 31;10:71 [PMID: 30766522]
  8. mSystems. 2016 Jun 14;1(3): [PMID: 27822529]
  9. J Basic Microbiol. 1999;39(1):3-9 [PMID: 10071861]
  10. J Biol Chem. 1994 Jun 17;269(24):16726-32 [PMID: 8206994]
  11. Extremophiles. 2001 Apr;5(2):73-83 [PMID: 11354458]
  12. Nucleic Acids Res. 2020 Jan 8;48(D1):D445-D453 [PMID: 31586394]
  13. J Biol Chem. 1995 Apr 14;270(15):8389-92 [PMID: 7721730]
  14. Crit Rev Toxicol. 2005 Aug;35(7):609-62 [PMID: 16417045]
  15. Methods Enzymol. 2001;331:132-44 [PMID: 11265456]
  16. FEMS Microbiol Rev. 2001 Apr;25(2):175-243 [PMID: 11250035]
  17. J Biol Chem. 2019 Jun 21;294(25):9995-10005 [PMID: 31097544]
  18. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  19. J Bacteriol. 1973 Nov;116(2):867-73 [PMID: 4147651]
  20. Front Microbiol. 2021 Oct 29;12:714110 [PMID: 34777272]
  21. J Biol Chem. 1991 Aug 5;266(22):14208-16 [PMID: 1907273]
  22. Proc Natl Acad Sci U S A. 2021 Oct 26;118(43): [PMID: 34686601]
  23. J Bacteriol. 1996 Jan;178(1):163-7 [PMID: 8550411]
  24. Chem Rev. 2014 Apr 9;114(7):3963-4038 [PMID: 24467397]
  25. Toxicol Appl Pharmacol. 2010 Feb 15;243(1):1-12 [PMID: 20034506]
  26. Front Microbiol. 2017 May 10;8:799 [PMID: 28539917]
  27. Future Microbiol. 2018 Jun 1;13:799-812 [PMID: 29726267]
  28. Int J Syst Bacteriol. 1996 Oct;46(4):939-46 [PMID: 8863420]
  29. Biochim Biophys Acta. 1993 Jan 15;1161(1):19-27 [PMID: 8380721]
  30. Compr Rev Food Sci Food Saf. 2003 Jul;2(3):101-110 [PMID: 33451235]
  31. Int J Syst Evol Microbiol. 2015 Oct;65(10):3235-3240 [PMID: 26296567]
  32. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617 [PMID: 29140435]
  33. Elife. 2022 Feb 09;11: [PMID: 35138247]
  34. Met Ions Biol Syst. 2002;39:673-97 [PMID: 11913140]
  35. J Bacteriol. 2001 Dec;183(24):7027-36 [PMID: 11717259]
  36. Curr Opin Struct Biol. 2016 Dec;41:54-61 [PMID: 27315560]
  37. Front Microbiol. 2014 Dec 05;5:674 [PMID: 25538694]
  38. Crit Rev Food Sci Nutr. 1989;28(3):211-48 [PMID: 2669832]
  39. J Microbiol Biotechnol. 2013 Dec;23(12):1645-53 [PMID: 24018967]
  40. J Bacteriol. 1989 Jun;171(6):3433-9 [PMID: 2542225]
  41. Int J Food Microbiol. 2014 Nov 17;191:36-44 [PMID: 25217724]
  42. Protein Sci. 2019 Jan;28(1):111-122 [PMID: 30120799]
  43. Atherosclerosis. 1974 Sep-Oct;20(2):207-15 [PMID: 4416681]
  44. Microb Pathog. 2017 Sep;110:645-653 [PMID: 28733027]
  45. PLoS One. 2014 Jan 14;9(1):e85844 [PMID: 24454935]
  46. Chem Res Toxicol. 2014 Jul 21;27(7):1081-91 [PMID: 24911545]
  47. Nat Chem Biol. 2015 Aug;11(8):586-91 [PMID: 26120796]
  48. Genome Biol. 2016 Jul 28;17(1):163 [PMID: 27468850]
  49. Nat Biotechnol. 2021 Jan;39(1):105-114 [PMID: 32690973]
  50. Stand Genomic Sci. 2013 Apr 15;8(1):1-14 [PMID: 23961307]

Grants

  1. R01 GM136885/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0BmWORhumangutaerobicWsinglefurfuralsuggestingpresencefirstClademicrobeisolatedtungstenanaerobesoxidoreductasehighapparentaldehydesfoodsincludingbenzaldehyderoledetoxificationBmFdelectronWORaldehydealsomemberWORsfoundstrainphRobligatelyfecesshowreadilytakesmetalpreviouslyassociatedincorporatedenzymepurifiednativebiomassconsists65 kDasubunitcontainsW-pyranopterincofactor[4Fe-4S]clusterexhibitedaldehyde-oxidizingactivityaffinitiesK < 6 μMcommoncookedpropionaldehydetolualdehydeplayskeyconvertedaddedfuroicacidgrownanalogouselementmolybdenumferredoxinservedacceptorK < 5 μMphysiologicalcarrierGenomeanalysisrevealedFd-dependentratherNADH-dependentComplexservessubstratesservesourceenergytungstoenzymefamilyobtainedstrictlymicroorganismRemarkablyoxidizedair21%Ov/vpresentcharacterized83predominantlyextremelyhalophilicarchaea83Amanyfoodsourcesremainingbacterialmembers83BincludeaerobespotentialadvantagesmicrobesinvolvedhealthharborO-resistantbased-probioticsdiscussedObligatelyexpressesoxygenresistanttungsten-containingdetoxifyingaerobeoxidationmicrobiome

Similar Articles

Cited By