Mechanical response of cardiac microtissues to acute localized injury.

Shoshana L Das, Bryan P Sutherland, Emma Lejeune, Jeroen Eyckmans, Christopher S Chen
Author Information
  1. Shoshana L Das: Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts. ORCID
  2. Bryan P Sutherland: Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
  3. Emma Lejeune: Department of Mechanical Engineering, Boston University, Boston, Massachusetts. ORCID
  4. Jeroen Eyckmans: Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
  5. Christopher S Chen: Department of Biomedical Engineering, Boston University, Boston, Massachusetts. ORCID

Abstract

After a myocardial infarction (MI), the heart undergoes changes including local remodeling that can lead to regional abnormalities in mechanical and electrical properties, ultimately increasing the risk of arrhythmias and heart failure. Although these responses have been successfully recapitulated in animal models of MI, local changes in tissue and cell-level mechanics caused by MI remain difficult to study in vivo. Here, we developed an in vitro cardiac microtissue (CMT) injury system that through acute focal injury recapitulates aspects of the regional responses seen following an MI. With a pulsed laser, cell death was induced in the center of the microtissue causing a loss of calcium signaling and a complete loss of contractile function in the injured region and resulting in a 39% reduction in the CMT's overall force production. After 7 days, the injured area remained void of cardiomyocytes (CMs) and showed increased expression of vimentin and fibronectin, two markers for fibrotic remodeling. Interestingly, although the injured region showed minimal recovery, calcium amplitudes in uninjured regions returned to levels comparable with control. Furthermore, overall force production returned to preinjury levels despite the lack of contractile function in the injured region. Instead, uninjured regions exhibited elevated contractile function, compensating for the loss of function in the injured region, drawing parallels to changes in tissue-level mechanics seen in vivo. Overall, this work presents a new in vitro model to study cardiac tissue remodeling and electromechanical changes after injury. We report an in vitro cardiac injury model that uses a high-powered laser to induce regional cell death and a focal fibrotic response within a human-engineered cardiac microtissue. The model captures the effects of acute injury on tissue response, remodeling, and electromechanical recovery in both the damaged region and surrounding healthy tissue, modeling similar changes to contractile function observed in vivo following myocardial infarction.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.20020511

References

  1. Cell Tissue Res. 2016 Sep;365(3):563-81 [PMID: 27324127]
  2. Circ Res. 2016 Jun 24;119(1):91-112 [PMID: 27340270]
  3. Acta Biomater. 2017 Aug;58:323-336 [PMID: 28629892]
  4. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  5. Circulation. 1990 Apr;81(4):1161-72 [PMID: 2138525]
  6. Curr Protoc Hum Genet. 2018 Jan 24;96:21.11.1-21.11.20 [PMID: 29364519]
  7. Pflugers Arch. 2014 Jun;466(6):1113-27 [PMID: 24519465]
  8. Circulation. 1982 Jun;65(7):1446-50 [PMID: 7074800]
  9. ESC Heart Fail. 2021 Feb;8(1):222-237 [PMID: 33319509]
  10. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10097-102 [PMID: 19541627]
  11. Nat Commun. 2021 Feb 2;12(1):753 [PMID: 33531489]
  12. Trends Mol Med. 2016 Feb;22(2):99-114 [PMID: 26776094]
  13. Pharmacol Ther. 2009 Aug;123(2):255-78 [PMID: 19460403]
  14. Adv Healthc Mater. 2017 Jun;6(11): [PMID: 28498548]
  15. Circulation. 2000 Jun 27;101(25):2981-8 [PMID: 10869273]
  16. Circ Heart Fail. 2016 Jan;9(1):e002460 [PMID: 26699392]
  17. Tissue Eng Part A. 2012 May;18(9-10):910-9 [PMID: 22092279]
  18. Circulation. 1993 Sep;88(3):915-26 [PMID: 8353918]
  19. J Clin Invest. 1998 Feb 15;101(4):890-8 [PMID: 9466984]
  20. J Theor Biol. 2017 Apr 7;418:1-7 [PMID: 28119022]
  21. Eur Heart J. 1990 Aug;11(8):740-8 [PMID: 2397736]
  22. Prog Biophys Mol Biol. 2016 Jan;120(1-3):134-48 [PMID: 26615948]
  23. Circ Res. 1985 Mar;56(3):351-8 [PMID: 3971509]
  24. World J Cardiol. 2017 May 26;9(5):407-415 [PMID: 28603587]
  25. ACS Cent Sci. 2019 Jul 24;5(7):1146-1158 [PMID: 31403068]
  26. Cell Mol Life Sci. 2014 Feb;71(4):549-74 [PMID: 23649149]
  27. J Exp Med. 2007 Nov 26;204(12):3037-47 [PMID: 18025128]
  28. PeerJ. 2014 Jun 19;2:e453 [PMID: 25024921]
  29. Circulation. 1988 Jul;78(1):186-201 [PMID: 2968197]
  30. Circulation. 1993 Mar;87(3):755-63 [PMID: 8443896]
  31. Biomaterials. 2020 Mar;233:119741 [PMID: 31927251]
  32. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  33. Compr Physiol. 2015 Sep 20;5(4):1877-909 [PMID: 26426470]
  34. J Biol Eng. 2019 Feb 13;13:15 [PMID: 30809271]
  35. J Cell Sci Ther. 2011 Dec 1;2012(S5): [PMID: 23493668]
  36. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  37. Basic Res Cardiol. 1998;93 Suppl 3:8-12 [PMID: 9879436]
  38. Circulation. 1987 May;75(5 Pt 2):IV93-7 [PMID: 2952370]
  39. Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H221-8 [PMID: 19897714]
  40. Cardiovasc Res. 2000 Feb;45(3):630-41 [PMID: 10728384]
  41. Nat Methods. 2013 Aug;10(8):781-7 [PMID: 23793239]
  42. Am J Pathol. 1985 Mar;118(3):484-92 [PMID: 3976847]
  43. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  44. Circ Res. 2014 Feb 28;114(5):872-88 [PMID: 24577967]
  45. Tissue Eng Part A. 2019 May;25(9-10):711-724 [PMID: 30311860]
  46. Basic Res Cardiol. 2002 Sep;97(5):343-7 [PMID: 12200633]
  47. J Am Heart Assoc. 2015 Jun 02;4(6):e001993 [PMID: 26037082]
  48. Circulation. 1997 Jan 21;95(2):320-3 [PMID: 9008443]
  49. Circulation. 2011 Feb 15;123(6):594-604 [PMID: 21282498]
  50. Biomaterials. 2004 Apr;25(9):1639-47 [PMID: 14697865]
  51. J Cardiovasc Transl Res. 2017 Apr;10(2):116-127 [PMID: 28281243]
  52. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  53. Cardiovasc Res. 2000 May;46(2):250-6 [PMID: 10773228]
  54. Nat Med. 2012 Jul 06;18(7):1028-40 [PMID: 22772564]
  55. Nano Lett. 2020 Apr 8;20(4):2585-2593 [PMID: 32092276]
  56. Front Cardiovasc Med. 2019 Apr 26;6:52 [PMID: 31080805]
  57. J Mol Cell Cardiol. 2016 May;94:189-200 [PMID: 26542796]

Grants

  1. R21 EB028491/NIBIB NIH HHS
  2. UH3 EB025765/NIBIB NIH HHS

MeSH Term

Animals
Calcium
Disease Models, Animal
Fibronectins
Humans
Myocardial Infarction
Myocytes, Cardiac
Ventricular Remodeling
Vimentin

Chemicals

Fibronectins
Vimentin
Calcium

Word Cloud

Created with Highcharts 10.0.0cardiacinjurychangestissuefunctioninjuredregionMIremodelingcontractileregionalmechanicsvivovitromicrotissueacutelossmodelresponsemyocardialinfarctionheartlocalresponsesstudyfocalseenfollowinglasercelldeathcalciumoverallforceproductioncardiomyocytesshowedfibroticrecoveryuninjuredregionsreturnedlevelselectromechanicalundergoesincludingcanleadabnormalitiesmechanicalelectricalpropertiesultimatelyincreasingriskarrhythmiasfailureAlthoughsuccessfullyrecapitulatedanimalmodelscell-levelcausedremaindifficultdevelopedCMTsystemrecapitulatesaspectspulsedinducedcentercausingsignalingcompleteresulting39%reductionCMT's7daysarearemainedvoidCMsincreasedexpressionvimentinfibronectintwomarkersInterestinglyalthoughminimalamplitudescomparablecontrolFurthermorepreinjurydespitelackInsteadexhibitedelevatedcompensatingdrawingparallelstissue-levelOverallworkpresentsnewreportuseshigh-poweredinducewithinhuman-engineeredcaptureseffectsdamagedsurroundinghealthymodelingsimilarobservedMechanicalmicrotissueslocalizedfibrosisengineeringiPSC-derivedorgan-on-chip

Similar Articles

Cited By