COVID-19 safe campus evaluation for universities by a hybrid interval type-2 fuzzy decision-making model.

Dilber Baskak, Sumeyye Ozbey, Melih Yucesan, Muhammet Gul
Author Information
  1. Dilber Baskak: Faculty of Health Sciences, Department of Emergency Aid and Disaster Management, Munzur University, Tunceli, Turkey.
  2. Sumeyye Ozbey: Faculty of Health Sciences, Department of Emergency Aid and Disaster Management, Munzur University, Tunceli, Turkey.
  3. Melih Yucesan: Faculty of Health Sciences, Department of Emergency Aid and Disaster Management, Munzur University, Tunceli, Turkey.
  4. Muhammet Gul: School of Transportation and Logistics, Istanbul University, 34320, Avcılar-Istanbul, Turkey. muhammetgul@istanbul.edu.tr. ORCID

Abstract

The fight against the COVID-19 pandemic, which has affected the whole world in recent years and has had devastating effects on all segments of society, has been one of the most important priorities. The Turkish Standards Institution has determined a checklist to contribute to developing safe and clean environments in higher education institutions in Turkey and to follow-up on infection control measures. However, this study is only a checklist that makes it necessary for decision-makers to make a subjective evaluation during the evaluation process, while the need to develop a more effective, systematic framework that takes into account the importance levels of multiple criteria has emerged. Therefore, this study applies the best-worst method under interval type-2 fuzzy set concept (IT2F-BWM) to determine the importance levels of criteria affecting the "COVID-19 safe campus" evaluation of universities in the context of global pandemic. A three-level hierarchy consisting of three main criteria, 11 sub-criteria, and 58 sub-criteria has been created for this aim. Considering the hierarchy, the most important sub-criterion was determined as periodic disinfection. The high contribution of the interval-valued type-2 fuzzy sets in expressing the uncertainty in the decision-makers' evaluations and the fact that BWM provides criterion weights with a mathematical optimization model that produces less pairwise comparisons and higher consistency are the main factors in choosing this approach. Simple additive weighting (SAW) has also been injected into the IT2F-BWM to determine the safety level of any university campus regarding COVID-19. Thus, decision-makers will be better prepared for the devastating effects of the pandemic by first improving the factors that are relatively important in the fight against the pandemic. In addition, a threshold value will be determined by considering all criteria, and it will prepare the ground for a road map for campuses. A case study is employed to apply the proposed model, and a comparison study is also presented with the Bayesian BWM to validate the results of the criteria weights.

Keywords

References

  1. . 2022 May;48(3):102521 [PMID: 35310789]
  2. Environ Res. 2022 Jan;203:111678 [PMID: 34280421]
  3. Sci Rep. 2021 Jan 21;11(1):1972 [PMID: 33479325]
  4. Eur J Oper Res. 2023 Jan 1;304(1):139-149 [PMID: 34316090]
  5. Math Biosci. 2020 Oct;328:108436 [PMID: 32758501]
  6. Crit Rev Clin Lab Sci. 2020 Sep;57(6):365-388 [PMID: 32645276]
  7. Am J Infect Control. 2022 Mar;50(3):330-335 [PMID: 34688726]
  8. Turk J Med Sci. 2020 Apr 18;50(SI-1):489-494 [PMID: 32304192]
  9. J Clin Microbiol. 2021 Mar 19;59(4): [PMID: 33509809]
  10. J Adolesc Health. 2021 Sep;69(3):383-389 [PMID: 34294509]
  11. Proc Natl Acad Sci U S A. 2021 Sep 28;118(39): [PMID: 34518375]
  12. Environ Pollut. 2020 Nov;266(Pt 1):115099 [PMID: 32623270]
  13. J Sch Health. 2021 May;91(5):347-355 [PMID: 33768529]
  14. PLoS One. 2022 Jul 21;17(7):e0270106 [PMID: 35862302]
  15. Sustain Cities Soc. 2021 May;68:102791 [PMID: 34703726]
  16. Turk J Med Sci. 2020 Apr 15;50(SI-1):571-577 [PMID: 32293835]
  17. Elife. 2021 Apr 16;10: [PMID: 33861198]
  18. J Occup Environ Med. 2021 Feb 1;63(2):119-125 [PMID: 33229907]
  19. MMWR Morb Mortal Wkly Rep. 2020 Oct 02;69(39):1416-1418 [PMID: 33001871]
  20. Int J Disaster Risk Reduct. 2022 Feb 15;70:102752 [PMID: 34976714]
  21. Psychiatry Res. 2020 Nov;293:113350 [PMID: 32777619]
  22. Am J Infect Control. 2021 Sep;49(9):1123-1128 [PMID: 33915230]
  23. Environ Sci Pollut Res Int. 2021 Jul;28(26):34211-34228 [PMID: 33991301]
  24. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  25. Socioecon Plann Sci. 2022 Aug;82:101266 [PMID: 35233122]
  26. Environ Res. 2022 Mar;204(Pt C):112314 [PMID: 34736923]
  27. Sustain Prod Consum. 2021 Jul;27:1975-1988 [PMID: 34778504]
  28. Pediatrics. 2022 Feb 1;149(12 Suppl 2): [PMID: 34737172]
  29. Sci Total Environ. 2021 Jul 20;779:146408 [PMID: 33743467]
  30. J Clin Transl Sci. 2021 Nov 22;6(1):e3 [PMID: 35079434]
  31. Environ Res. 2021 Jun;197:111099 [PMID: 33819476]
  32. Front Public Health. 2021 Dec 16;9:751451 [PMID: 34976917]
  33. Environ Sci Pollut Res Int. 2021 Dec;28(45):64793-64817 [PMID: 34313933]
  34. JAMA Netw Open. 2020 Jul 1;3(7):e2016818 [PMID: 32735339]
  35. Radiology. 2020 Aug;296(2):E26-E31 [PMID: 32687455]
  36. Prog Disaster Sci. 2022 Jan;13:100215 [PMID: 35036901]
  37. Environ Dev Sustain. 2021;23(5):7951-7960 [PMID: 32863738]
  38. Infect Dis Model. 2021;6:1025-1045 [PMID: 34414342]
  39. Environ Res. 2021 Sep;200:111374 [PMID: 34058182]
  40. Wellcome Open Res. 2021 Oct 20;6:282 [PMID: 34796281]
  41. Build Simul. 2021;14(6):1795-1809 [PMID: 33680337]
  42. Int J Health Plann Manage. 2021 May;36(3):618-627 [PMID: 33694192]
  43. Int J Educ Res Open. 2022;3:100146 [PMID: 35280701]
  44. Environ Res. 2021 Aug;199:111339 [PMID: 34029545]
  45. Appl Soft Comput. 2022 Jan;115:108243 [PMID: 34899106]
  46. J Occup Environ Hyg. 2021 Dec;18(12):590-603 [PMID: 34569919]
  47. Environ Res. 2022 May 15;208:112711 [PMID: 35033552]
  48. PLoS One. 2021 Aug 12;16(8):e0254798 [PMID: 34383766]

MeSH Term

Humans
Bayes Theorem
COVID-19
Fuzzy Logic
Pandemics
Universities
Decision Making
Turkey

Word Cloud

Created with Highcharts 10.0.0criteriaCOVID-19pandemicstudyevaluationtype-2fuzzyimportantdeterminedsafemodelcampuswillfightdevastatingeffectschecklisthigherdecision-makersimportancelevelsmethodintervalsetIT2F-BWMdetermineuniversitieshierarchymainsub-criteriaBWMweightsfactorsalsoaffectedwholeworldrecentyearssegmentssocietyoneprioritiesTurkishStandardsInstitutioncontributedevelopingcleanenvironmentseducationinstitutionsTurkeyfollow-upinfectioncontrolmeasuresHowevermakesnecessarymakesubjectiveprocessneeddevelopeffectivesystematicframeworktakesaccountmultipleemergedThereforeappliesbest-worstconceptaffecting"COVID-19campus"contextglobalthree-levelconsistingthree1158createdaimConsideringsub-criterionperiodicdisinfectionhighcontributioninterval-valuedsetsexpressinguncertaintydecision-makers'evaluationsfactprovidescriterionmathematicaloptimizationproduceslesspairwisecomparisonsconsistencychoosingapproachSimpleadditiveweightingSAWinjectedsafetyleveluniversityregardingThusbetterpreparedfirstimprovingrelativelyadditionthresholdvalueconsideringpreparegroundroadmapcampusescaseemployedapplyproposedcomparisonpresentedBayesianvalidateresultshybriddecision-makingBest-worstIntervalSafe

Similar Articles

Cited By