Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles.

Isadora Takako Smith, Elric Zhang, Yagmur Akin Yildirim, Manuel Alberteris Campos, Mostafa Abdel-Mottaleb, Burak Yildirim, Zeinab Ramezani, Victoria Louise Andre, Aidan Scott-Vandeusen, Ping Liang, Sakhrat Khizroev
Author Information
  1. Isadora Takako Smith: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  2. Elric Zhang: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  3. Yagmur Akin Yildirim: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  4. Manuel Alberteris Campos: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  5. Mostafa Abdel-Mottaleb: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  6. Burak Yildirim: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA. ORCID
  7. Zeinab Ramezani: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  8. Victoria Louise Andre: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  9. Aidan Scott-Vandeusen: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA.
  10. Ping Liang: Cellular Nanomed, Inc. (CNMI), Irvine, California, USA.
  11. Sakhrat Khizroev: Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA. ORCID

Abstract

Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Keywords

References

  1. Ajroudi, L., Villain, S., Madigou, V., Mliki, N., & Leroux, C. (2010). Synthesis and microstructure of cobalt ferrite nanoparticles. Journal of Crystal Growth, 312, 2465-2471.
  2. Betal, S., Dutta, M., Cotica, L. F., Bhalla, A., & Guo, R. (2015). BaTiO3 coated CoFe2O4-core-shell magnetoelectric nanoparticles (CSMEN) characterization. Integrated Ferroelectrics, 166, 225-231.
  3. Betal, S., Dutta, M., Shrestha, B., Cotica, L., Tang, L., Bhalla, A., & Guo, R. Y. (2016). Cell permeation using core-shell magnetoelectric nanoparticles. Integrated Ferroelectrics, 174, 186-194.
  4. Betal, S., Shrestha, B., Dutta, M., Cotica, L. F., Khachatryan, E., Nash, K., Tang, L., Bhalla, A. S., & Guo, R. Y. (2016). Magneto-elasto-electroporation (MEEP): In-vitro visualization and numerical characteristics. Scientific Reports, 6, 32019.
  5. Bok, I., Haber, H., Qu, X., & Aviad Hai, A. (2022). In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Scientific Reports, 12, 8386.
  6. Bueno-Baques, D., Hurtado-Lopez, G., Corral-Flores, V., Gomez, S., Diley, N. R., & Glushchenko, A. (2014). Development of a new module for the measurement of the magneto-electric direct and converse effects based on an alternating current susceptometer. Review of Scientific Instruments, 85, 085116.
  7. Cagnan, H., Denison, T., McIntyre, C., & Brown, P. (2019). Emerging technologies for improved deep brain stimulation. Nature Biotechnology, 37, 1024-1033.
  8. Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L. H., & Moore, C. I. (2010). Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols, 5, 247-254.
  9. Cecchi, F. (2020). Are non-invasive brain stimulation techniques effective in the treatment of chronic pain?-A Cochrane review summary with commentary. Journal of Rehabilitation Medicine, 52, jrm00039.
  10. Cenik, F., Schoberwalter, D., Keilani, M., Maehr, B., Wolzt, M., Marhold, M., & Crevenna, R. (2016). Neuromuscular electrical stimulation of the thighs in cardiac patients with implantable cardioverter defibrillators. Wiener Klinische Wochenschrift, 128, 802-808.
  11. Chalah, M. A., & Ayache, S. S. (2019). Noninvasive brain stimulation and psychotherapy in anxiety and depressive disorders: A viewpoint. Brain Sciences, 9, 82.
  12. Chen, R., Gore, F., Nguyen, Q. A., Ramakrishnan, C., Patel, S., Kim, S. H., Raffiee, M., Kim, Y. S., Hsueh, B., Krook-Magnusson, E., Soltesz, I., & Deisseroth, K. (2021). Deep brain optogenetics without intracranial surgery. Nature Biotechnology, 39, 161-164.
  13. Chen, R., Romero, G., Christiansen, M. G., Mohr, A., & Anikeeva, P. (2015). Wireless magnetothermal deep brain stimulation. Science, 347, 1477-1480.
  14. Chiang, N. J., Wu, S. N., Kao, C. A., Huang, Y. M., & Chen, L. T. (2014). Stimulation of electroporation-induced inward currents in glioblastoma cell lines by the heat shock protein inhibitor AUY922. Clinical and Experimental Pharmacology and Physiology, 41, 830-837.
  15. Chu, Z. Q., PourhosseiniAsl, M., & Dong, S. X. (2018). Review of multi-layered magnetoelectric composite materials and devices applications. Journal of Physics D: Applied Physics, 51, 243001.
  16. Corral-Flores, V., Bueno-Baques, D., Carrillo-Flores, D., & Matutes-Aquino, J. A. (2006). Enhanced magnetoelectric effect in core-shell particulate composites. Journal of Applied Physics, 99, 08J503.
  17. Diana, M., Raij, T., Melis, M., Nummenmaa, A., Leggio, L., & Bonci, A. (2017). Rehabilitating the addicted brain with transcranial magnetic stimulation. Nature Reviews Neuroscience, 18, 685-693.
  18. Doshi, P. K. (2011). Long-term surgical and hardware-related complications of deep brain stimulation. Stereotactic and Functional Neurosurgery, 89, 89-95.
  19. Duecker, F., de Graaf, T. A., Jacobs, C., & Sack, A. T. (2013). Time- and task-dependent non-neural effects of real and sham TMS. PLoS One, 8, e73813.
  20. Duke, A. R., Lu, H., Jenkins, M. W., Chiel, H. J., & Jansen, E. D. (2012). Spatial and temporal variability in response to hybrid electro-optical stimulation. Journal of Neural Engineering, 9, 036003.
  21. Fiebig, M., Lottermoser, T., Meier, D., & Trassin, M. (2016). The evolution of multiferroics. Nature Reviews Materials, 1, 16046.
  22. Figee, M., Luigjes, J., Smolders, R., Valencia-Alfonso, C. E., van Wingen, G., de Kwaasteniet, B., Mantione, M., Ooms, P., de Koning, P., Vulink, N., Levar, N., Droge, L., van den Munckhof, P., Schuurman, P. R., Nederveen, A., van den Brink, W., Mazaheri, A., Vink, M., & Denys, D. (2013). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nature Neuroscience, 16, 386-U195.
  23. Gardner, J. (2013). A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools. Social Studies of Science, 43, 707-728.
  24. Graupe, D., Khobragade, N., Tuninetti, D., Basu, I., Slavin, K. V., & Metman, L. V. (2018). Who may benefit from on-demand control of deep brain stimulation? Noninvasive evaluation of Parkinson patients. Neuromodulation, 21, 611-616.
  25. Grossman, N. (2018). Modulation without surgical intervention noninvasive deep brain stimulation can be achieved via temporally interfering electric fields. Science, 361, 461-462.
  26. Guduru, R., & Khizroev, S. (2014). Magnetic field-controlled release of paclitaxel drug from functionalized Magnetoelectric nanoparticles. Particle & Particle Systems Characterization, 31, 605-611.
  27. Guduru, R., Liang, P., Hong, J., Rodzinski, A., Hadjikhani, A., Horstmyer, J., Levister, E., & Khizroev, S. (2015). Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine, 10, 2051-2061.
  28. Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V., & Khizroev, S. (2013). Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Scientific Reports, 3, 2953.
  29. Guduru, R., Liang, P., Yousef, M., Horstmyer, J., & Khizroev, S. (2018). Mapping the brain's electric fields with magnetoelectric nanoparticles. Bioelectronic Medicine, 4, 10.
  30. Gyergyek, S., Drofenik, M., & Makovec, D. (2012). Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Materials Chemistry and Physics, 133, 515-522.
  31. Hadjikhani, A., Rodzinski, A., Wang, P., Nagesetti, A., Guduru, R., Liang, P., Runowicz, C., Shahbazmohamadi, S., & Khizroev, S. (2017). Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine, 12, 1801-1822.
  32. Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55, 187-199.
  33. Hartwig, V., Giovannetti, G., Vanello, N., Lombardi, M., Landini, L., & Simi, S. (2009). Biological effects and safety in magnetic resonance imaging: A review. International Journal of Environmental Research and Public Health, 6, 1778-1798.
  34. Hsu, W. Y., Ku, Y. X., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: A systematic review and meta-analysis. Neurobiology of Aging, 36, 2348-2359.
  35. Kaushik, A., Jayant, R. D., Nikkhah-Moshaie, R., Bhardwaj, V., Roy, U., Huang, Z. H., Ruiz, A., Yndart, A., Atluri, V., El-Hage, N., Khalili, K., & Nair, M. (2016). Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Scientific Reports, 6, 25309.
  36. Kaushik, A., Nikkhah-Moshaie, R., Sinha, R., Bhardwaj, V., Atluri, V., Jayant, R. D., Yndart, A., Kateb, B., Pala, N., & Nair, M. (2017). Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Scientific Reports, 7, 45663.
  37. Kaushik, A., Rodriguez, J., Rothen, D., Bhardwaj, V., Jayant, R. D., Pattany, P., Fuentes, B., Chand, H., Kolishetti, N., El-Hage, N., Khalili, K., Kenyon, N. S., & Nair, M. (2019). MRI-guided, noninvasive delivery of magneto-electric drug Nanocarriers to the brain in a nonhuman primate. ACS Applied Bio Materials, 2, 4826-4836.
  38. Kaushik, A., Yndart, A., Atluri, V., Tiwari, S., Tomitaka, A., Gupta, P., Jayant, R. D., Alvarez-Carbonell, D., Khalili, K., & Nair, M. (2019). Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Scientific Reports, 9, 3928.
  39. Kaushik, A. K. A., Rodriguez, J. R. J., Rothen, D. R. D., Bhardwaj, V. B. V., Jayant, R. D. J. R. D., Nikkhah-Moshaie, R. N. M. R., Yndart, A. Y. A., Fuentes, B. F. B., Chand, H. C. H., Govind, V. G. V., El-Hage, N. E. H. N., Kenyon, N. K. N. S., & Nair, M. N. M. (2017). MRI-assisted magnetically guided CNS delivery of magneto-electro nanoparticles in non-human primate. Journal of Neuroimmune Pharmacology, 12, S48.
  40. Khizroev, S., & Liang, P. (2020). Engineering future medicines with magnetoelectric nanoparticles: Wirelessly controlled, targeted therapies. IEEE Nanotechnology Magazine, 14, 23-29.
  41. Kim, C. K., Adhikari, A., & Deisseroth, K. (2017). Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 18, 222-235.
  42. Kopyl, S., Surmenev, R., Surmeneva, M., Fetisov, Y., & Kholkin, A. (2021). Magnetoelectric effect: Principles and applications in biology and medicine-A review. Materials Today Bio, 12, 100149.
  43. Koseoglu, Y., Alan, F., Tan, M., Yilgin, R., & Ozturk, M. (2012). Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceramics International, 38, 3625-3634.
  44. Kozielski, K. L., Jahanshahi, A., Gilbert, H. B., Yu, Y., Erin, O., Francisco, D., Alosaimi, F., Temel, Y., & Sitti, M. (2021). Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice. Science Advances, 7, eabc4189.
  45. Kringelbach, M. L., Jenkinson, N., Owen, S. L. F., & Aziz, T. Z. (2007). Translational principles of deep brain stimulation. Nature Reviews Neuroscience, 8, 623-635.
  46. Krishna, V., Sammartino, F., & Rezai, A. (2018). A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology advances in diagnosis and treatment. JAMA Neurology, 75, 246-254.
  47. Landau, L. D. (1937). Collected papers of L. D. Landau. Journal of Experimental and Theoretical Physics, 7, 19.
  48. Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., Filipovic, S. R., Grefkes, C., Hasan, A., Hummel, F. C., Jaaskelainen, S. K., Langguth, B., Leocani, L., Londero, A., Nardone, R., Nguyen, J. P., Nyffeler, T., Oliveira-Maia, A. J., Oliviero, A., … Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018) (vol 131, pg 474, 2020). Clinical Neurophysiology, 131, 1168-1169.
  49. Liang, P. (2019). Methods for killing cancer cells and cellular imaging using magneto-electric nano-particles and external magnetic field. WO2016025768A1.
  50. Liu, W. W., Zhang, F. Y., Yan, Y. Y., Zhang, C. G., Zhao, H., Heng, B. C., Huang, Y., Shen, Y., Zhang, J. X., Chen, L. L., Wen, X. F., & Deng, X. L. (2021). Remote tuning of built-in Magnetoelectric microenvironment to promote bone regeneration by modulating cellular exposure to arginylglycylaspartic acid peptide. Advanced Functional Materials, 31, 2006226.
  51. Lozano, A. M. (2017). Waving hello to noninvasive deep-brain stimulation. New England Journal of Medicine, 377, 1096-1098.
  52. Lu, C. L., Wu, M., Lin, L., & Liu, J. M. (2019). Single-phase multiferroics: New materials, phenomena, and physics. National Science Review, 6, 653-668.
  53. Lu, L. T., Dung, N. T., Tung, L. D., Thanh, C. T., Quy, O. K., Chuc, N. V., Maenosono, S., & Thanh, N. T. K. (2015). Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: The influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale, 7, 19596-19610.
  54. Marshel, J. H., Kim, Y. S., Machado, T. A., Quirin, S., Benson, B., Kadmon, J., Raja, C., Chibukhchyan, A., Ramakrishnan, C., Inoue, M., Shane, J. C., McKnight, D. J., Yoshizawa, S., Kato, H. E., Ganguli, S., & Deisseroth, K. (2019). Cortical layer-specific critical dynamics triggering perception. Science, 365, 558.
  55. Mushtaq, F., Torlakcik, H., Vallmajo-Martin, Q., Siringil, E. C., Zhang, J. H., Rohrig, C., Shen, Y., Yu, Y. C., Chen, X. Z., Muller, R., Nelson, B. J., & Pane, S. (2019). Magnetoelectric 3D scaffolds for enhanced bone cell proliferation. Applied Materials Today, 16, 290-300.
  56. Nagesetti, A., Rodzinski, A., Stimphil, E., Stewart, T., Khanal, C., Wang, P., Guduru, R., Liang, P., Agoulnik, I., Horstmyer, J., & Khizroev, S. (2017). Multiferroic core-shell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Scientific Reports, 7, 1610.
  57. Nair, M., Guduru, R., Liang, P., Hong, J., Sagar, V., & Khizroev, S. (2013). Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nature Communications, 4, 1707.
  58. Naseri, M. G., Saion, E. B., Ahangar, H. A., Shaari, A. H., & Hashim, M. (2010). Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. Journal of Nanomaterials, 2010, 907686.
  59. Nathan, A., Ng, A., Mitra, A., Sooriakumaran, P., Davda, R., Patel, S., Fricker, M., Kelly, J., Shaw, G., Rajan, P., Sridhar, A., Nathan, S., & Payne, H. (2022). Comparative effectiveness analyses of salvage prostatectomy and salvage radiotherapy outcomes following focal or whole-gland ablative therapy (high-intensity focused ultrasound, cryotherapy or electroporation) for localised prostate cancer. Clinical Oncology, 34, E69-E78.
  60. Nguyen, T., Gao, J., Wang, P., Nagesetti, A., Andrews, P., Masood, S., Vriesmann, Z., Liang, P., Khizroev, S., & Jin, X. (2021). In vivo wireless brain stimulation via non-invasive and targeted delivery of magnetoelectric nanoparticles. Neurotherapeutics, 18, 2091-2106.
  61. Niu, L. L., Guo, Y. C., Lin, Z. R., Shi, Z., Bian, T. Y., Qi, L., Meng, L., Grace, A. A., Zheng, H. R., & Yuan, T. F. (2020). Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance. Science China. Life Sciences, 63, 1328-1336.
  62. Pardo, M., & Khizroev, S. (2022). Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach. WIREs Nanomedicine and Nanobiotechnology, 14, e1781.
  63. Pardo, M., Roberts, E. R., Pimentel, K., Yildirim, Y. A., Navarrete, B., Wang, P., Zhang, E., Liang, P., & Khizroev, S. (2020). Size-dependent intranasal administration of magnetoelectric nanoparticles for targeted brain localization. Nanomedicine, 32, 102337.
  64. Ramezani, Z., & Seo, K. J. (2021). Hybrid electrical and optical neural interfaces. Journal of Micromechanics Fang, and Microengineering, 31, 044002.
  65. Rao, B. N., Kaviraj, P., Vaibavi, S. R., Kumar, A., Bajpai, S. K., & Arockiarajan, A. (2017). Investigation of magnetoelectric properties and biocompatibility of CoFe2O4-BaTiO3 core-shell nanoparticles for biomedical applications. Journal of Applied Physics, 122, 164102.
  66. Reardon, D., Nagpal, S., Soltys, S., Brem, S., Omuro, A., De La Fuente, M., Bredlau, A. L., Lowy, I., Fury, M., Morrow, M., Kraynyak, K., McMullan, T., Santo, A. L., Sacchetta, B., & Skolnik, J. (2019). INO-5401 and INO-9012 delivered by electroporation (EP) in combination with cemiplimab (REGN2810) in newly-diagnosed glioblastoma (GBM) (NCT03491683). Cancer Research, 79, CT114.
  67. Ribeiro, C., Correia, D. M., Ribeiro, S., Fernandes, M. M., & Lanceros-Mendez, S. (2018). Piezo- and magnetoelectric polymers as biomaterials for novel tissue engineering strategies. Mrs Advances, 3, 1671-1676.
  68. Ribeiro, S., Ribeiro, C., Carvalho, E. O., Tubio, C. R., Castro, N., Pereira, N., Correia, V., Gomes, A. C., & Lanceros-Mendez, S. (2020). Magnetically activated electroactive microenvironments for skeletal muscle tissue regeneration. ACS Applied Bio Materials, 3, 4239-4252.
  69. Rodriguez, M., Kaushik, A., Lapierre, J., Dever, S. M., El-Hage, N., & Nair, M. (2017). Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood-brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. Journal of Neuroimmune Pharmacology, 12, 120-132.
  70. Rodzinski, A., Guduru, R., Liang, P., Hadjikhani, A., Stewart, T., Stimphil, E., Runowicz, C., Cote, R., Altman, N., Datar, R., & Khizroev, S. (2016). Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Scientific Reports, 6, 20867.
  71. Sajjia, M., Oubaha, M., Hasanuzzaman, M., & Olabi, A. G. (2014). Developments of cobalt ferrite nanoparticles prepared by the sol-gel process. Ceramics International, 40, 1147-1154.
  72. Sollmann, N., Hauck, T., Tussis, L., Ille, S., Maurer, S., Boeckh-Behrens, T., Ringel, F., Meyer, B., & Krieg, S. M. (2016). Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects. BMC Neuroscience, 17, 67.
  73. Song, Q., & Zhang, Z. J. (2004). Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical Society, 126, 6164-6168.
  74. Spaldin, N. A., & Ramesh, R. (2019). Advances in magnetoelectric multiferroics. Nature Materials, 18, 203-212.
  75. Sparing, R., & Mottaghy, F. M. (2008). Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction. Methods, 44, 329-337.
  76. Stewart, T. S., Nagesetti, A., Guduru, R., Liang, P., Stimphil, E., Hadjikhani, A., Salgueiro, L., Horstmyer, J., Cai, R. Z., Schally, A., & Khizroev, S. (2018). Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomedicine, 13, 423-438.
  77. Stimphil, E., Nagesetti, A., Guduru, R., Stewart, T., Rodzinski, A., Liang, P., & Khizroev, S. (2017). Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles. Applied Physics Reviews, 4, 021101.
  78. Sun, S. H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., & Li, G. X. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 126, 273-279.
  79. Tian, Z., Xu, L., Gao, Y., Yuan, S., & Xia, Z. (2017). Magnetic memory effect at room temperature in exchange coupled NiFe2O4-NiO nanogranular system. Journal of Applied Physics Letters, 111, 182406.
  80. Tsong, T. Y. (1991). Electroporation of cell-membranes. Biophysical Journal, 60, 297-306.
  81. Tuomari, D., Elliott, G., Kulwich, B., Yarrington, J., Fouillet, X., Geoly, F., & Long, P. (2004). Society of toxicologic pathology position on histopathology data collection and audit trail: Compliance with 21 CFR parts 58 and 11. Toxicologic Pathology, 32, 122-123.
  82. Vykhodtseva, N., McDannold, N., & Hynynen, K. (2008). Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics, 48, 279-296.
  83. Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1, 73-79.
  84. Wang, X., Chai,H., Lin, P. H., Yao, Q., & Chen, C. (2009). Roles and mechanisms of humanImmunodeficiency virus protease inhibitor ritonavir and other anti-humanImmunodeficiency virus drugs in endothelial dysfunction of porcine pulmonary arteries and human pulmonary artery endothelial cells. The American Journal of Pathology, 174, 771-781.
  85. Wang, P., Zhang, E., Toledo, D., Smith, I. T., Navarrete, B., Furman, N., Hernandez, A. F., Telusma, M., McDaniel, D., Liang, P., & Khizroev, S. (2020). Colossal magnetoelectric effect in core-shell magnetoelectric nanoparticles. Nano Letters, 20, 5765-5772.
  86. Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics, 41, 135-160.
  87. Weinberg, U. (2018). Novocure's tumor treating fields: Innovative brain cancer therapy with survival and safety benefits. Nature, 561, 1-4.
  88. Wheeler, M. A., Smith, C. J., Ottolini, M., Barker, B. S., Purohit, A. M., Grippo, R. M., Gaykema, R. P., Spano, A. J., Beenhakker, M. P., Kucenas, S., Patel, M. K., Deppmann, C. D., & Guler, A. D. (2016). Genetically targeted magnetic control of the nervous system. Nature Neuroscience, 19, 756.
  89. Xhima, K., Markham-Coultes, K., Nedev, H., Heinen, S., Saragovi, H. U., Hynynen, K., & Aubert, I. (2020). Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Science Advances, 6, eaax6646.
  90. Xiao, S. H., Jiang, W. F., Li, L. Y., & Li, X. J. (2007). Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Materials Chemistry and Physics, 106, 82-87.
  91. Yang, M., & Brackenbury, W. J. (2013). Membrane potential and cancer progression. Frontiers in Physiology, 4, 185.
  92. Yue, K., Guduru, R., Hong, J. M., Liang, P., Nair, M., & Khizroev, S. (2012). Magneto-electric Nano-particles for non-invasive brain stimulation. PLoS One, 7, e44040.
  93. Zhang, Y. S., Chen, S. P., Xiao, Z. W., Liu, X. Y., Wu, C. H., Wu, K., Liu, A. M., Wei, D., Sun, J., Zhou, L. X., & Fan, H. S. (2021). Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration. Advanced Healthcare Materials, 10, e2100695.
  94. Zhao, L. J., Zhang, H. J., Xing, Y., Song, S. Y., Yu, S. Y., Shi, W. D., Guo, X. M., Yang, J. H., Lei, Y. Q., & Cao, F. (2008). Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. Journal of Solid State Chemistry, 181, 245-252.

MeSH Term

Mice
Animals
Nanomedicine
Nanoparticles
Drug Delivery Systems
Nanotechnology
Brain

Word Cloud

Created with Highcharts 10.0.0nanoparticlesMENPsviaApproaches>magnetoelectricfieldsapplicationsbrainstimulationtargeteddeliveryBBBvivomodelsdemonstratedvitroTherapeuticDrugDiscoveryNanomedicinecanelectricapplicationmagneticwirelessnumberneuralacrosstissueregenerationhigh-specificitycancerindependentstudiesdrugcBiologyDiseaseUnlikeknowndategeneraterelativelystronglocallyviceversamagnetizationchangeresponsefieldmicroenvironmentHenceservetwo-wayinterfaceman-madedevicesphysiologicalsystemsmolecularlevelrecentdevelopmentroom-temperaturebiocompatiblenovelpotentialmedicalemergedincludemapping/recordingactivityreal-timeblood-brainbarriercuresmolecular-levelrapiddiagnosticsothersSeveralusingmicenonhumanprimatescapabilitydeliverintravenousinjectionalternativelybypassingintranasalinhalationWirelessdeepdifferentrodentsseveralgroupsHigh-specificitytreatmentmethodswellapproachesproposeddedicatedunderstandunderlyingmechanismsMENPs-baseddaarticlecategorizedunder:NanotechnologyNanoscaleSystemsNeurologicalOncologicEmergingTechnologiesnanobiotechnologymultiferroicmaterialsmultifunctional

Similar Articles

Cited By