The Effect of Electromagnetic Radiation Transmitted from Routers on Antibiotic Susceptibility of Bacterial Pathogens.

Athanasios Pegios, Dimitrios Kavvadas, Konstantinos Ζarras, Konstantia Mpani, Prodromos Soukiouroglou, Sofia Charalampidou, Eleni Vagdatli, Theodora Papamitsou
Author Information
  1. Athanasios Pegios: MD, Pediatric Surgeon, Hippokratio General Hospital, Thessaloniki, Greece.
  2. Dimitrios Kavvadas: PhD Candidate, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
  3. Konstantinos Ζarras: MD, Department of Molecular Biology and Genetics, Democritus University of Thrace, Greece.
  4. Konstantia Mpani: MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece.
  5. Prodromos Soukiouroglou: MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece.
  6. Sofia Charalampidou: MD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece.
  7. Eleni Vagdatli: PhD, Department of Biopathology and Microbiology, Hippokratio General Hospital, Thessaloniki, Greece.
  8. Theodora Papamitsou: PhD, Histology and Embryology Laboratory, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.

Abstract

Background: Electromagnetic non-ionizing radiation has both thermal and non-thermal outcomes on biological systems, such as humans, animals, and bacteria.
Objective: This study aimed to investigate the effect of non-ionizing radiofrequency radiation, emitted by Wi-Fi routers, on bacterial strains and the modification of their susceptibility to modern antibiotics.
Material and Methods: In this case-control paired study, four bacteria were selected, and one colony from each bacterial strain was exposed to Wi-Fi radiation forming the exposure group. Another set of colonies was not exposed to Wi-Fi radiation, forming the control group. Eight different antibiotic disks were set on the bacterial plates, and the inhibition zone was measured every 3 h for each colony.
Results: Electromagnetic radiation affects bacterial colonies and their susceptibility to antibiotics. Analysis revealed statistically significant differences, correlated with the bacterial strain, the antibiotic agent, and the time of the exposure, in the inhibition zones, mostly after 6 and 24 h (p-value < 0.05).
Conclusion: A correlation was observed between antibiotic susceptibility and non-ionizing radiofrequency exposure. Studying the effects of radiofrequency radiation on prokaryotic organisms could clarify more complicated cell structures and organisms, such as eukaryotic. Further experiments, in vitro and in vivo, could provide more information about these outcomes and cause experts to discuss the current guidelines of exposure limits.

Keywords

References

  1. Electromagn Biol Med. 2021 Apr 3;40(2):264-273 [PMID: 33539186]
  2. J Biomed Phys Eng. 2019 Oct 01;9(5):579-586 [PMID: 31750272]
  3. Przegl Lek. 2015;72(11):636-41 [PMID: 27012122]
  4. Am J Clin Pathol. 1996 Apr;105(4):380-3 [PMID: 8604678]
  5. Toxicol Lett. 2020 May 1;323:35-40 [PMID: 31991167]
  6. Int J Environ Health Res. 2022 Apr;32(4):916-940 [PMID: 32885667]
  7. Environ Res. 2020 Jul;186:109445 [PMID: 32289567]
  8. Antimicrob Agents Chemother. 1975 Aug;8(2):139-45 [PMID: 1180540]
  9. Ther Adv Drug Saf. 2014 Dec;5(6):229-41 [PMID: 25436105]
  10. Tohoku J Exp Med. 2019;248(3):169-179 [PMID: 31353326]
  11. Int J Oncol. 2015 May;46(5):1865-71 [PMID: 25738972]
  12. Environ Pollut. 2017 Feb;221:501-505 [PMID: 27903411]
  13. Biomed Res Int. 2015;2015:289152 [PMID: 26180791]
  14. J Plant Physiol. 2014 Sep 15;171(15):1436-43 [PMID: 25050479]
  15. J Biomed Phys Eng. 2015 Sep 01;5(3):121-32 [PMID: 26396968]
  16. Int J Environ Res Public Health. 2018 Oct 12;15(10): [PMID: 30321997]
  17. Int J Environ Res Public Health. 2013 Sep 12;10(9):4274-305 [PMID: 24036486]
  18. J Biomed Phys Eng. 2016 Sep 01;6(3):157-164 [PMID: 27853723]
  19. Environ Pollut. 2018 Nov;242(Pt A):643-658 [PMID: 30025338]
  20. Biotechnol Prog. 2017 Jan;33(1):37-44 [PMID: 27792273]
  21. Mutat Res Rev Mutat Res. 2019 Jul - Sep;781:53-62 [PMID: 31416578]
  22. Dose Response. 2017 Jan 23;15(1):1559325816688527 [PMID: 28203122]
  23. J Biomed Phys Eng. 2015 Sep 01;5(3):115-20 [PMID: 26396967]
  24. Pediatr Ann. 2017 Apr 1;46(4):e172-e174 [PMID: 28414399]
  25. J Biomed Phys Eng. 2019 Dec 01;9(6):637-646 [PMID: 32039094]
  26. Galen Med J. 2020 Mar 14;9:e1580 [PMID: 34466555]

Word Cloud

Created with Highcharts 10.0.0radiationbacterialWi-FiexposureElectromagneticnon-ionizingradiofrequencysusceptibilityantibioticoutcomesbacteriastudyantibioticscolonystrainexposedforminggroupsetcoloniesinhibitionhorganismsRadiationBackground:thermalnon-thermalbiologicalsystemshumansanimalsObjective:aimedinvestigateeffectemittedroutersstrainsmodificationmodernMaterialMethods:case-controlpairedfourselectedoneAnothercontrolEightdifferentdisksplateszonemeasuredevery3Results:affectsAnalysisrevealedstatisticallysignificantdifferencescorrelatedagenttimezonesmostly624p-value<005Conclusion:correlationobservedStudyingeffectsprokaryoticclarifycomplicatedcellstructureseukaryoticexperimentsvitrovivoprovideinformationcauseexpertsdiscusscurrentguidelineslimitsEffectTransmittedRoutersAntibioticSusceptibilityBacterialPathogensAnti-BacterialAgentsBacteriaDrugResistanceRadiofrequencyWirelessTechnology

Similar Articles

Cited By