Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO).

Kate Summer, Jessica Browne, Matthijs Hollanders, Kirsten Benkendorff
Author Information
  1. Kate Summer: Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
  2. Jessica Browne: Faculty of Health, Southern Cross University, Terminal Drive, Bilinga, Qld, 4225, Australia.
  3. Matthijs Hollanders: Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
  4. Kirsten Benkendorff: National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia.

Abstract

Bacteria in biofilm formations are up to 1000 times less susceptible to antibiotics than their planktonic counterparts. Recognition of the role of biofilms in ∼80% of chronic infections, their contribution to bacterial tolerance and development of antimicrobial resistance, and thus the search for compounds with antibiofilm properties, has increased greatly in recent years. The need for robust experimental methods is therefore critical but currently undermined by inappropriate controls when dimethyl-sulfoxide (DMSO) is used to enhance test compound solubility. DMSO is known to have a limited effect on planktonic growth, but emerging data indicates that the solvent can affect biofilm formation even at low concentrations. Here, we present both a literature review on the application of DMSO in antibiofilm studies, as well as a series of experiments and Bayesian hormetic dose-response modelling to define the effects of DMSO alone and in combination with standard antibiotics using two clinically important biofilm-forming bacteria. DMSO has been used in 76 published studies to solubilise a wide variety of synthesised and natural products, including plant extracts, isolated secondary metabolites, modified lead molecules and proteins, in antibiofilm assays. DMSO solvent concentrations to which biofilms were exposed ranged between <1 and 100% but unfortunately, 35% of articles did not specify the DMSO concentrations used, 50% of articles did not include solvent controls and, of those that did, 26% did not specify control concentrations, 47% did not report or discuss control data, and 53% omitted media controls. In a further 12 studies, DMSO is used as a biofilm treatment, demonstrating the antibiofilm properties of this solvent at higher concentrations. We provide evidence that DMSO (between 0.03 and 25%) significantly inhibits biofilm formation in , but not , and acts synergistically with standard antibiotics at very low concentrations (<1%). Interestingly, intermediate concentrations of DMSO (∼6%) strongly promote the growth of biofilms. As the research community strives to identify bioactive antimicrobial compounds, there is a need for increased scientific rigour when using DMSO as a solvent in antibiofilm assays.

Keywords

References

  1. Chem Soc Rev. 2021 Feb 15;50(3):1587-1616 [PMID: 33403373]
  2. Antimicrob Agents Chemother. 2016 Jul 22;60(8):5054-8 [PMID: 27246776]
  3. J Ethnopharmacol. 2009 Jul 15;124(2):289-94 [PMID: 19397986]
  4. Antibiotics (Basel). 2020 Dec 16;9(12): [PMID: 33339285]
  5. Antibiotics (Basel). 2021 May 19;10(5): [PMID: 34069329]
  6. Nanomedicine (Lond). 2021 Sep;16(21):1905-1923 [PMID: 34348474]
  7. Antimicrob Agents Chemother. 2016 Nov 21;60(12):7159-7169 [PMID: 27645245]
  8. Microb Pathog. 2020 Oct;147:104253 [PMID: 32592822]
  9. Int J Oral Sci. 2015 Mar 23;7(1):1-7 [PMID: 25504208]
  10. Antibiotics (Basel). 2021 Jul 22;10(8): [PMID: 34438945]
  11. Int Braz J Urol. 2015 Jan-Feb;41(1):67-77 [PMID: 25928511]
  12. Luminescence. 1999 Jan-Feb;14(1):23-31 [PMID: 10398557]
  13. Int J Pharm. 2014 Oct 1;473(1-2):148-57 [PMID: 24998510]
  14. Am J Surg. 1967 Sep;114(3):414-26 [PMID: 5340064]
  15. Lancet. 2001 Jul 14;358(9276):135-8 [PMID: 11463434]
  16. Toxicology. 2019 Sep 1;425:152249 [PMID: 31330228]
  17. Bioorg Chem. 2017 Aug;73:37-42 [PMID: 28599132]
  18. mBio. 2019 Sep 10;10(5): [PMID: 31506315]
  19. J Ethnopharmacol. 2019 Sep 15;241:111955 [PMID: 31102615]
  20. Photodiagnosis Photodyn Ther. 2018 Sep;23:18-24 [PMID: 29753881]
  21. Appl Microbiol Biotechnol. 2021 Jan;105(1):341-352 [PMID: 33215259]
  22. Folia Microbiol (Praha). 2018 Jan;63(1):23-30 [PMID: 28540585]
  23. PLoS One. 2017 Nov 6;12(11):e0187418 [PMID: 29107978]
  24. Antibiotics (Basel). 2021 Apr 13;10(4): [PMID: 33924401]
  25. Antimicrob Agents Chemother. 2017 Oct 24;61(11): [PMID: 28893778]
  26. Regen Med. 2020 Mar;15(3):1463-1491 [PMID: 32342730]
  27. Front Microbiol. 2021 May 06;12:579806 [PMID: 34025592]
  28. Antibiotics (Basel). 2021 Jul 03;10(7): [PMID: 34356732]
  29. Phys Chem Chem Phys. 2016 Apr 21;18(15):10270-80 [PMID: 27020538]
  30. Antibiotics (Basel). 2021 Jul 14;10(7): [PMID: 34356776]
  31. Biomed Pharmacother. 2020 Aug;128:110184 [PMID: 32450528]
  32. Oral Health Prev Dent. 2016;14(2):149-55 [PMID: 25789362]
  33. Molecules. 2009 Jul 13;14(7):2535-54 [PMID: 19633622]
  34. Sci Rep. 2019 Mar 15;9(1):4641 [PMID: 30874586]
  35. Protein J. 2017 Aug;36(4):286-298 [PMID: 28470375]
  36. Mar Drugs. 2020 Jul 23;18(8): [PMID: 32717885]
  37. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30082294]
  38. Microb Pathog. 2017 Dec;113:85-93 [PMID: 29042302]
  39. Antibiotics (Basel). 2021 Feb 05;10(2): [PMID: 33562526]
  40. Environ Toxicol Chem. 2005 Dec;24(12):3166-72 [PMID: 16445100]
  41. Front Microbiol. 2021 Jul 02;12:702762 [PMID: 34276635]
  42. ISRN Pharm. 2012;2012:195727 [PMID: 22830056]
  43. Virulence. 2018 Jan 1;9(1):522-554 [PMID: 28362216]
  44. AMB Express. 2020 Oct 19;10(1):185 [PMID: 33074419]
  45. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  46. Front Cell Infect Microbiol. 2021 Jan 27;10:597517 [PMID: 33585272]
  47. Photodiagnosis Photodyn Ther. 2018 Dec;24:102-108 [PMID: 30240927]
  48. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  49. Front Microbiol. 2020 Oct 20;11:573951 [PMID: 33193183]
  50. Turk J Pharm Sci. 2020 Dec 23;17(6):667-672 [PMID: 33389969]
  51. Front Microbiol. 2015 May 20;6:479 [PMID: 26042111]
  52. Antibiotics (Basel). 2020 Oct 24;9(11): [PMID: 33114334]
  53. Appl Environ Microbiol. 1989 Nov;55(11):2827-31 [PMID: 2624463]
  54. FASEB J. 2014 Mar;28(3):1317-30 [PMID: 24327606]
  55. Chem Biol Drug Des. 2015 Jan;85(1):56-78 [PMID: 25393203]
  56. Front Microbiol. 2020 Sep 02;11:2109 [PMID: 32983070]
  57. Infect Drug Resist. 2021 Jun 09;14:2143-2154 [PMID: 34135604]
  58. 3 Biotech. 2020 Jul;10(7):315 [PMID: 32596100]
  59. J Microbiol Methods. 2014 Jun;101:63-6 [PMID: 24726871]
  60. NPJ Biofilms Microbiomes. 2021 Jan 27;7(1):9 [PMID: 33504806]
  61. Ecotoxicology. 2019 Nov;28(9):1136-1141 [PMID: 31559559]
  62. Microb Pathog. 2020 Dec;149:104482 [PMID: 32920147]
  63. Crit Rev Microbiol. 2017 May;43(3):313-351 [PMID: 27868469]
  64. Molecules. 2015 Jun 16;20(6):11119-30 [PMID: 26087259]
  65. 3 Biotech. 2019 Apr;9(4):136 [PMID: 30863715]
  66. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28923875]
  67. Rev Soc Bras Med Trop. 2015 Jul-Aug;48(4):432-6 [PMID: 26312934]
  68. Antibiotics (Basel). 2020 Sep 28;9(10): [PMID: 32998217]
  69. Antibiotics (Basel). 2021 Feb 21;10(2): [PMID: 33670013]
  70. Vet Hum Toxicol. 2001 Aug;43(4):228-31 [PMID: 11474739]
  71. Appl Environ Microbiol. 2012 May;78(9):3369-78 [PMID: 22389366]
  72. Carbohydr Res. 2008 Jan 14;343(1):81-9 [PMID: 18028888]
  73. Antimicrob Agents Chemother. 2013 Aug;57(8):3681-7 [PMID: 23689719]
  74. J Pharm Bioallied Sci. 2020 Aug;12(Suppl 1):S423-S429 [PMID: 33149499]
  75. BMC Complement Med Ther. 2021 Apr 9;21(1):116 [PMID: 33836728]
  76. Int Urogynecol J. 2017 Jul;28(7):1085-1089 [PMID: 27987022]
  77. Infect Immun. 2001 Feb;69(2):719-29 [PMID: 11159960]
  78. J Pharm Sci. 1969 Jul;58(7):836-9 [PMID: 4980332]
  79. Infect Drug Resist. 2019 Jul 23;12:2223-2235 [PMID: 31440064]
  80. Photodiagnosis Photodyn Ther. 2021 Sep;35:102416 [PMID: 34197966]
  81. Jpn J Infect Dis. 2014;67(3):172-9 [PMID: 24858605]
  82. Lancet Infect Dis. 2015 Jul;15(7):758-60 [PMID: 26122435]
  83. J Ethnopharmacol. 2019 Nov 15;244:112135 [PMID: 31377263]
  84. Eur J Oral Sci. 2018 Jun;126(3):214-221 [PMID: 29517121]
  85. Bioorg Med Chem. 2021 Feb 1;31:115967 [PMID: 33434766]
  86. Mol Biol Rep. 2019 Jun;46(3):3225-3232 [PMID: 30937654]
  87. Antibiotics (Basel). 2020 Oct 08;9(10): [PMID: 33049970]
  88. Am J Transl Res. 2015 Dec 15;7(12):2589-602 [PMID: 26885259]
  89. J Antibiot (Tokyo). 2020 May;73(5):290-298 [PMID: 31992865]
  90. Postdoc J. 2015 Jun;3(6):36-49 [PMID: 28748199]

Word Cloud

Created with Highcharts 10.0.0DMSOconcentrationsantibiofilmsolventbiofilmusedantibioticsbiofilmscompoundsneedcontrolsdatastudiesassaysplanktonicantimicrobialpropertiesincreasedmethodsdimethyl-sulfoxidegrowthformationlowstandardusingarticlesspecifycontrolBacteriaformations1000timeslesssusceptiblecounterpartsRecognitionrole∼80%chronicinfectionscontributionbacterialtolerancedevelopmentresistancethussearchgreatlyrecentyearsrobustexperimentalthereforecriticalcurrentlyunderminedinappropriateenhancetestcompoundsolubilityknownlimitedeffectemergingindicatescanaffectevenpresentliteraturereviewapplicationwellseriesexperimentsBayesianhormeticdose-responsemodellingdefineeffectsalonecombinationtwoclinicallyimportantbiofilm-formingbacteria76publishedsolubilisewidevarietysynthesisednaturalproductsincludingplantextractsisolatedsecondarymetabolitesmodifiedleadmoleculesproteinsexposedranged<1100%unfortunately35%50%include26%47%reportdiscuss53%omittedmedia12treatmentdemonstratinghigherprovideevidence00325%significantlyinhibitsactssynergistically<1%Interestinglyintermediate∼6%stronglypromoteresearchcommunitystrivesidentifybioactivescientificrigourcontrol:standardisedapproachesreportingincorporatingAntibacterialBioassayBiofilmDrugdiscoveryHormesisvivoscreeningLipophilicSolvent

Similar Articles

Cited By (17)