An eco-evo-devo genetic network model of stress response.

Li Feng, Tianyu Dong, Peng Jiang, Zhenyu Yang, Ang Dong, Shang-Qian Xie, Christopher H Griffin, Rongling Wu
Author Information
  1. Li Feng: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  2. Tianyu Dong: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  3. Peng Jiang: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  4. Zhenyu Yang: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  5. Ang Dong: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  6. Shang-Qian Xie: Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China.
  7. Christopher H Griffin: Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
  8. Rongling Wu: Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Abstract

The capacity of plants to resist abiotic stresses is of great importance to agricultural, ecological and environmental sustainability, but little is known about its genetic underpinnings. Existing genetic tools can identify individual genetic variants mediating biochemical, physiological, and cellular defenses, but fail to chart an overall genetic atlas behind stress resistance. We view stress response as an eco-evo-devo process by which plants adaptively respond to stress through complex interactions of developmental canalization, phenotypic plasticity, and phenotypic integration. As such, we define and quantify stress response as the developmental change of adaptive traits from stress-free to stress-exposed environments. We integrate composite functional mapping and evolutionary game theory to reconstruct omnigenic, information-flow interaction networks for stress response. Using desert-adapted Euphrates poplar as an example, we infer salt resistance-related genome-wide interactome networks and trace the roadmap of how each SNP acts and interacts with any other possible SNPs to mediate salt resistance. We characterize the previously unknown regulatory mechanisms driving trait variation; i.e. the significance of a SNP may be due to the promotion of positive regulators, whereas the insignificance of a SNP may result from the inhibition of negative regulators. The regulator-regulatee interactions detected are not only experimentally validated by two complementary experiments, but also biologically interpreted by their encoded protein-protein interactions. Our eco-evo-devo model of genetic interactome networks provides an approach to interrogate the genetic architecture of stress response and informs precise gene editing for improving plants' capacity to live in stress environments.

References

  1. Nat Rev Genet. 2010 Jun;11(6):446-50 [PMID: 20479774]
  2. Front Plant Sci. 2018 Jul 19;9:913 [PMID: 30073003]
  3. Eur J Hum Genet. 2017 Jun;25(7):877-885 [PMID: 28401901]
  4. Trends Ecol Evol. 2021 Jul;36(7):637-650 [PMID: 33863602]
  5. New Phytol. 2014 Jan;201(1):357-365 [PMID: 24032980]
  6. Cell. 2017 Jun 15;169(7):1177-1186 [PMID: 28622505]
  7. Sci Rep. 2020 Feb 21;10(1):3196 [PMID: 32081960]
  8. Front Microbiol. 2020 Jul 22;11:1666 [PMID: 32793155]
  9. Trends Ecol Evol. 1998 Feb 1;13(2):77-81 [PMID: 21238209]
  10. Mol Ecol Resour. 2020 May;20(3): [PMID: 32034885]
  11. Tree Physiol. 1994 Jul-Sep;14(7_9):843-853 [PMID: 14967653]
  12. Front Plant Sci. 2017 Apr 26;8:593 [PMID: 28491067]
  13. Comput Struct Biotechnol J. 2020 Sep 05;18:2510-2521 [PMID: 33005313]
  14. F1000Res. 2016 Nov 22;5:2740 [PMID: 28163897]
  15. Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):547-56 [PMID: 20083631]
  16. Evolution. 2021 Jun;75(6):1477-1491 [PMID: 33458812]
  17. Evolution. 2014 Jan;68(1):81-91 [PMID: 24111588]
  18. Nat Rev Genet. 2006 Mar;7(3):229-37 [PMID: 16485021]
  19. Brief Bioinform. 2012 Mar;13(2):162-74 [PMID: 21746694]
  20. Front Plant Sci. 2020 Feb 21;11:118 [PMID: 32153619]
  21. Animals (Basel). 2020 Nov 22;10(11): [PMID: 33266380]
  22. Stat Appl Genet Mol Biol. 2005;4:Article33 [PMID: 16646852]
  23. Trends Ecol Evol. 2016 Jul;31(7):563-574 [PMID: 27067134]
  24. Elife. 2019 Dec 04;8: [PMID: 31799931]
  25. Genetics. 2002 Aug;161(4):1751-62 [PMID: 12196415]
  26. Trends Ecol Evol. 2005 Sep;20(9):481-6 [PMID: 16701424]
  27. Cell Rep. 2021 May 11;35(6):109114 [PMID: 33979624]
  28. Nat Rev Genet. 2015 Oct;16(10):611-22 [PMID: 26370902]
  29. Front Plant Sci. 2020 Oct 22;11:585212 [PMID: 33193535]
  30. Genetics. 2002 Aug;161(4):1685-96 [PMID: 12196411]
  31. Tree Physiol. 2011 Apr;31(4):452-61 [PMID: 21427158]
  32. Nat Commun. 2013;4:2797 [PMID: 24256998]
  33. DNA Res. 2015 Apr;22(2):133-45 [PMID: 25627243]
  34. Sci Adv. 2020 May 22;6(21):eaba3388 [PMID: 32494748]
  35. Plant Cell Environ. 2017 Oct;40(10):2276-2291 [PMID: 28418069]
  36. Proc Natl Acad Sci U S A. 2014 Jul 22;111 Suppl 3:10810-7 [PMID: 25024202]
  37. Plant Physiol. 2017 Aug;174(4):2302-2315 [PMID: 28600346]
  38. PLoS Genet. 2019 Jun 24;15(6):e1008222 [PMID: 31233496]
  39. Tree Physiol. 2004 Mar;24(3):265-76 [PMID: 14704136]
  40. Genome Biol Evol. 2018 Jan 1;10(1):77-93 [PMID: 29293993]
  41. Nat Rev Genet. 2007 Dec;8(12):921-31 [PMID: 18007649]
  42. Mol Ecol. 2020 Apr;29(7):1300-1314 [PMID: 32130752]
  43. Nat Commun. 2019 Feb 1;10(1):538 [PMID: 30710077]
  44. Phys Life Rev. 2017 Mar;20:126-137 [PMID: 27914918]
  45. PLoS Genet. 2012;8(8):e1002839 [PMID: 22876191]
  46. J Exp Bot. 2004 Feb;55(396):307-19 [PMID: 14718494]
  47. PLoS Comput Biol. 2018 May 18;14(5):e1006172 [PMID: 29775459]
  48. Genetics. 2014 Jun;197(2):573-89 [PMID: 24700103]
  49. Genet Res (Camb). 2008 Oct;90(5):385-95 [PMID: 19061529]
  50. Nat Plants. 2017 Sep;3(9):715-723 [PMID: 29150689]
  51. Trends Plant Sci. 2000 Dec;5(12):537-42 [PMID: 11120476]
  52. Plant J. 2017 Jun;90(5):918-928 [PMID: 28244225]
  53. J Exp Bot. 2019 Feb 5;70(3):739-745 [PMID: 30445526]
  54. Mol Biol Evol. 2016 Oct;33(10):2576-92 [PMID: 27401233]
  55. Genetics. 2019 Jul;212(3):891-904 [PMID: 31123044]
  56. Genetics. 2008 Oct;180(2):821-34 [PMID: 18780724]
  57. Plant J. 2019 Mar;97(6):1168-1182 [PMID: 30536697]
  58. Evolution. 1998 Aug;52(4):967-977 [PMID: 28565223]
  59. Dev Cell. 2020 Dec 7;55(5):529-543 [PMID: 33290694]
  60. J Am Stat Assoc. 2016;111(515):1004-1019 [PMID: 28239216]

Word Cloud

Created with Highcharts 10.0.0stressgeneticresponseeco-evo-devointeractionsnetworksSNPcapacityplantsresistancedevelopmentalphenotypicenvironmentssaltinteractomemayregulatorsmodelresistabioticstressesgreatimportanceagriculturalecologicalenvironmentalsustainabilitylittleknownunderpinningsExistingtoolscanidentifyindividualvariantsmediatingbiochemicalphysiologicalcellulardefensesfailchartoverallatlasbehindviewprocessadaptivelyrespondcomplexcanalizationplasticityintegrationdefinequantifychangeadaptivetraitsstress-freestress-exposedintegratecompositefunctionalmappingevolutionarygametheoryreconstructomnigenicinformation-flowinteractionUsingdesert-adaptedEuphratespoplarexampleinferresistance-relatedgenome-widetraceroadmapactsinteractspossibleSNPsmediatecharacterizepreviouslyunknownregulatorymechanismsdrivingtraitvariationiesignificanceduepromotionpositivewhereasinsignificanceresultinhibitionnegativeregulator-regulateedetectedexperimentallyvalidatedtwocomplementaryexperimentsalsobiologicallyinterpretedencodedprotein-proteinprovidesapproachinterrogatearchitectureinformsprecisegeneeditingimprovingplants'livenetwork

Similar Articles

Cited By (1)