Role of and in the seasonal control of reproductive and vegetative development in the perennial crop × .

Julio C Muñoz-Avila, Concepción Prieto, José F Sánchez-Sevilla, Iraida Amaya, Cristina Castillejo
Author Information
  1. Julio C Muñoz-Avila: Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain.
  2. Concepción Prieto: Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain.
  3. José F Sánchez-Sevilla: Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain.
  4. Iraida Amaya: Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain.
  5. Cristina Castillejo: Laboratorio de Mejora y Biotecnología, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA) Centro de Málaga, Málaga, Spain.

Abstract

The diploid woodland strawberry () represents an important model for the genus . Significant advances in the understanding of the molecular mechanisms regulating seasonal alternance of flower induction and vegetative reproduction has been made in this species. However, this research area has received little attention on the cultivated octoploid strawberry ( × ) despite its enormous agronomical and economic importance. To advance in the characterization of this intricated molecular network, expression analysis of key flowering time genes was performed both in short and long days and in cultivars with seasonal and perpetual flowering. Analysis of overexpression of and in the seasonal flowering 'Camarosa' allowed functional validation of a number of responses already observed in while uncovered differences related to the regulation of FaFTs expression and gibberellins (GAs) biosynthesis. While FvCO has been shown to promote flowering and inhibit runner development in the perpetual flowering H4 accession of , our study showed that responds to LD photoperiods as in but delayed flowering to some extent, possibly by induction of the strong repressor in crowns. A contrasting effect on runnering was observed in FaCO transgenic plants, some lines showing reduced runner number whereas in others runnering was slightly accelerated. We demonstrate that the role of the MADS-box transcription factor FaSOC1 as a strong repressor of flowering and promoter of vegetative growth is conserved in woodland and cultivated strawberry. Our study further indicates an important role of FaSOC1 in the photoperiodic repression of FLOWERING LOCUS T (FT) genes and while upregulation was less prominent than that observed in . In our experimental conditions, FaSOC1 promotion of vegetative growth do not require induction of GA biosynthesis, despite GA biosynthesis genes showed a marked photoperiodic upregulation in response to long days, supporting GA requirement for the promotion of vegetative growth. Our results also provided insights into additional factors, such as FaTEM, associated with the vegetative developmental phase that deserve further characterization in the future.

Keywords

References

  1. Curr Opin Plant Biol. 2017 Jun;37:10-17 [PMID: 28391047]
  2. Nature. 2001 Apr 26;410(6832):1116-20 [PMID: 11323677]
  3. Nature. 2003 Apr 17;422(6933):719-22 [PMID: 12700762]
  4. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6398-403 [PMID: 16606827]
  5. Plant Cell. 2017 Sep;29(9):2168-2182 [PMID: 28874507]
  6. Plant Cell Rep. 1996 Apr;15(8):642-6 [PMID: 24178534]
  7. New Phytol. 2017 Nov;216(3):841-853 [PMID: 28815698]
  8. Plant J. 2003 Sep;35(5):613-23 [PMID: 12940954]
  9. Plant Cell. 2013 Sep;25(9):3296-310 [PMID: 24038650]
  10. Front Plant Sci. 2022 Feb 24;13:832795 [PMID: 35310677]
  11. Nature. 1959 Jan 17;183(4655):197-8 [PMID: 13622749]
  12. J Exp Bot. 2011 May;62(8):2453-63 [PMID: 21239381]
  13. Sci Rep. 2023 Feb 3;13(1):1968 [PMID: 36737641]
  14. Sci Rep. 2019 Mar 1;9(1):3275 [PMID: 30824841]
  15. Nat Rev Genet. 2012 Sep;13(9):627-39 [PMID: 22898651]
  16. Plant Signal Behav. 2011 Sep;6(9):1267-70 [PMID: 21847027]
  17. J Exp Bot. 2019 Oct 24;70(20):5687-5701 [PMID: 31328226]
  18. Transgenic Res. 1995 Jul;4(4):288-90 [PMID: 7655517]
  19. Plant Biotechnol J. 2016 Sep;14(9):1852-61 [PMID: 26940366]
  20. Mol Plant. 2018 Jan 8;11(1):230-233 [PMID: 29158170]
  21. J Exp Bot. 2013 Apr;64(7):1837-48 [PMID: 23554259]
  22. Trends Plant Sci. 2000 Dec;5(12):523-30 [PMID: 11120474]
  23. Phytochem Anal. 2008 Nov-Dec;19(6):520-5 [PMID: 18618437]
  24. Plant Physiol. 2021 Nov 3;187(3):1221-1234 [PMID: 34618090]
  25. J Exp Bot. 2017 Oct 13;68(17):4839-4850 [PMID: 29048562]
  26. Nat Genet. 2019 Mar;51(3):541-547 [PMID: 30804557]
  27. Plant Physiol. 2012 Jul;159(3):1043-54 [PMID: 22566495]
  28. J Exp Bot. 2010 May;61(9):2247-54 [PMID: 20413527]
  29. Nat Commun. 2013;4:2884 [PMID: 24300952]
  30. Sci Rep. 2014 Jan 15;4:3704 [PMID: 24424565]
  31. Curr Biol. 2008 Sep 9;18(17):1338-43 [PMID: 18718758]
  32. Trends Biochem Sci. 2000 May;25(5):236-40 [PMID: 10782094]
  33. Plant J. 2012 Jan;69(1):116-25 [PMID: 21895811]
  34. New Phytol. 2021 Oct;232(1):372-387 [PMID: 34131919]
  35. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  36. Science. 2004 Feb 13;303(5660):1003-6 [PMID: 14963328]
  37. J Exp Bot. 2016 Oct;67(19):5643-5655 [PMID: 27664957]
  38. Science. 2006 May 19;312(5776):1040-3 [PMID: 16675663]
  39. Front Plant Sci. 2014 Jun 11;5:271 [PMID: 24966865]
  40. Front Plant Sci. 2021 Dec 31;12:816086 [PMID: 35035390]
  41. Planta. 2018 Apr;247(4):941-951 [PMID: 29288326]
  42. Annu Rev Plant Biol. 2015;66:441-64 [PMID: 25534513]
  43. Plant Biotechnol J. 2016 Nov;14(11):2176-2189 [PMID: 27168086]
  44. Nature. 2011 Sep 25;478(7367):119-22 [PMID: 21947007]
  45. BMC Plant Biol. 2009 Feb 11;9:18 [PMID: 19210764]
  46. Plant J. 2015 Apr;82(1):163-73 [PMID: 25720985]
  47. J Plant Physiol. 2015 Apr 1;177:60-66 [PMID: 25666540]

Word Cloud

Created with Highcharts 10.0.0floweringvegetativestrawberryseasonalFaSOC1inductioncultivatedgenesobservedbiosynthesisrunneringgrowthGAwoodlandimportantmolecular×despitecharacterizationexpressionlongdaysperpetualnumbergibberellinsrunnerdevelopmentstudyshowedstrongrepressorFaCOrolephotoperiodicupregulationpromotiondiploidrepresentsmodelgenusSignificantadvancesunderstandingmechanismsregulatingalternanceflowerreproductionmadespeciesHoweverresearchareareceivedlittleattentionoctoploidenormousagronomicaleconomicimportanceadvanceintricatednetworkanalysiskeytimeperformedshortcultivarsAnalysisoverexpression'Camarosa'allowedfunctionalvalidationresponsesalreadyuncovereddifferencesrelatedregulationFaFTsGAsFvCOshownpromoteinhibitH4accessionrespondsLDphotoperiodsdelayedextentpossiblycrownscontrastingeffecttransgenicplantslinesshowingreducedwhereasothersslightlyaccelerateddemonstrateMADS-boxtranscriptionfactorpromoterconservedindicatesrepressionFLOWERINGLOCUSTFTlessprominentexperimentalconditionsrequiremarkedresponsesupportingrequirementresultsalsoprovidedinsightsadditionalfactorsFaTEMassociateddevelopmentalphasedeservefutureRolecontrolreproductiveperennialcropFragariaphotoperiod

Similar Articles

Cited By