Identification of receptor-like proteins induced by in .

Wei Li, Junxing Lu, Chenghuizi Yang, Shitou Xia
Author Information
  1. Wei Li: Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
  2. Junxing Lu: College of Life Science, Chongqing Normal University, Chongqing, China.
  3. Chenghuizi Yang: Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
  4. Shitou Xia: Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.

Abstract

Heightening the resistance of plants to microbial infection is a widely concerned issue, especially for economical crops. Receptor-like proteins (RLPs), typically with tandem leucine-rich repeats (LRRs) domain, play a crucial role in mediating immune activation, being an indispensable constituent in the first layer of defense. Based on an analysis of orthologs among , and using RLPs as a reference framework, we found that compared to , there were some obvious evolutionary diversities of RLPs among the three species. encoding genes were unevenly distributed on chromosomes, mainly on chrA01, chrA04, chrC03, chrC04, and chrC06. The orthologs of five RLPs (RLP3, RLP10, RLP17, RLP44, and RLP51) were highly conserved, but retrenchment and functional centralization occurred in RLPs during evolution. The RLP proteins were clustered into 13 subgroups. Ten presented expression specificity between R and S when elicited by , which might be fabulous candidates for resistance research.

Keywords

References

  1. Science. 1994 Nov 4;266(5186):789-93 [PMID: 7973631]
  2. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 [PMID: 7584402]
  3. Plant J. 2017 Mar;89(6):1195-1209 [PMID: 27995670]
  4. Genome Biol. 2002;3(2):RESEARCH0008 [PMID: 11864370]
  5. Plant Cell. 2013 Jun;25(6):2330-40 [PMID: 23898033]
  6. Nat Commun. 2022 Mar 11;13(1):1294 [PMID: 35277499]
  7. Nucleic Acids Res. 2022 Jan 7;50(D1):D1432-D1441 [PMID: 34755871]
  8. Plant Physiol. 2005 Jun;138(2):1027-36 [PMID: 15923325]
  9. BMC Genomics. 2017 Jun 19;18(1):467 [PMID: 28629321]
  10. Plant Physiol. 2008 Jun;147(2):503-17 [PMID: 18434605]
  11. Front Plant Sci. 2017 Oct 06;8:1736 [PMID: 29056941]
  12. Front Plant Sci. 2014 Mar 28;5:111 [PMID: 24734035]
  13. Plant Biotechnol J. 2019 Apr;17(4):789-800 [PMID: 30230187]
  14. Plant Cell. 1999 Oct;11(10):1925-34 [PMID: 10521522]
  15. New Phytol. 2013 Jan;197(2):595-605 [PMID: 23206118]
  16. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  17. Plant Cell. 2018 Feb;30(2):285-299 [PMID: 29382771]
  18. Plant Pathol J. 2018 Oct;34(5):435-444 [PMID: 30369853]
  19. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  20. Science. 2002 May 31;296(5573):1697-700 [PMID: 12040198]
  21. Mol Plant Microbe Interact. 2008 Apr;21(4):448-58 [PMID: 18321190]
  22. Nat Plants. 2015 Oct 05;1:15140 [PMID: 27251392]
  23. Plant Cell. 2013 Oct;25(10):4227-41 [PMID: 24104566]
  24. Bioinformatics. 2015 Apr 15;31(8):1296-7 [PMID: 25504850]
  25. BMC Plant Biol. 2015 Jun 19;15:148 [PMID: 26084488]
  26. Sci Rep. 2020 Aug 14;10(1):13798 [PMID: 32796867]
  27. PLoS One. 2016 Nov 10;11(11):e0165975 [PMID: 27832102]
  28. Plant Cell. 2010 Sep;22(9):3153-63 [PMID: 20841424]
  29. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  30. Biology (Basel). 2020 Dec 30;10(1): [PMID: 33396674]
  31. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6511-5 [PMID: 11331751]
  32. Nat Rev Genet. 2008 Dec;9(12):938-50 [PMID: 19015656]
  33. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):10010-5 [PMID: 23716655]
  34. Plant Signal Behav. 2013;8(12):e27408 [PMID: 24384530]
  35. Plant Cell. 2004 Jun;16(6):1604-15 [PMID: 15155877]
  36. Anal Biochem. 2010 Oct 1;405(1):138-40 [PMID: 20522329]
  37. Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):886-90 [PMID: 14715897]
  38. Front Plant Sci. 2018 Nov 23;9:1708 [PMID: 30532761]
  39. PLoS One. 2014 Nov 05;9(11):e111988 [PMID: 25372567]
  40. Sci Rep. 2016 Jan 08;6:19007 [PMID: 26743436]
  41. Genes Dev. 2001 Oct 15;15(20):2755-66 [PMID: 11641280]
  42. J Exp Bot. 2016 May;67(11):3339-51 [PMID: 27099374]
  43. Plant Physiol. 2010 Jan;152(1):320-31 [PMID: 19897604]
  44. Plant Biotechnol J. 2015 Sep;13(7):983-92 [PMID: 25644479]
  45. Plant Physiol. 2014 Jan;164(1):352-64 [PMID: 24259685]
  46. Front Plant Sci. 2018 Jan 17;8:2272 [PMID: 29387078]
  47. Front Plant Sci. 2015 Oct 29;6:933 [PMID: 26579176]
  48. BMC Genomics. 2021 Jul 20;22(1):557 [PMID: 34284718]
  49. PLoS Genet. 2013 May;9(5):e1003525 [PMID: 23717215]
  50. Genome Biol Evol. 2012;4(3):265-77 [PMID: 22275519]
  51. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  52. Front Plant Sci. 2020 Nov 12;11:577536 [PMID: 33281844]
  53. Plant Physiol. 2005 Jun;138(2):611-23 [PMID: 15955925]
  54. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15261-6 [PMID: 25288746]
  55. J Plant Physiol. 2011 Mar 1;168(4):403-7 [PMID: 20961653]
  56. Plant J. 2017 May;90(3):573-586 [PMID: 28222234]

Word Cloud

Created with Highcharts 10.0.0RLPsproteinsresistanceorthologsamongevolutionexpressionreceptor-likeHeighteningplantsmicrobialinfectionwidelyconcernedissueespeciallyeconomicalcropsReceptor-liketypicallytandemleucine-richrepeatsLRRsdomainplaycrucialrolemediatingimmuneactivationindispensableconstituentfirstlayerdefenseBasedanalysisusingreferenceframeworkfoundcomparedobviousevolutionarydiversitiesthreespeciesencodinggenesunevenlydistributedchromosomesmainlychrA01chrA04chrC03chrC04chrC06fiveRLP3RLP10RLP17RLP44RLP51highlyconservedretrenchmentfunctionalcentralizationoccurredRLPclustered13subgroupsTenpresentedspecificityRSelicitedmightfabulouscandidatesresearchIdentificationinducedBrassicanapusSclerotiniasclerotiorumpatternprotein

Similar Articles

Cited By