Assessing the Emergence of Resistance in vitro and Invivo: Linezolid Combined with Fosfomycin Against Fosfomycin-Sensitive and Resistant .

Yaowen Li, Yu Peng, Na Zhang, Huiping Liu, Jun Mao, Yisong Yan, Shuaishuai Wang, Guang Yang, Yanyan Liu, Jiabin Li, Xiaohui Huang
Author Information
  1. Yaowen Li: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China. ORCID
  2. Yu Peng: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.
  3. Na Zhang: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.
  4. Huiping Liu: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.
  5. Jun Mao: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.
  6. Yisong Yan: Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, People's Republic of China.
  7. Shuaishuai Wang: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.
  8. Guang Yang: Department of Pharmacy, The Third People's Hospital of Tongling, Tongling, Anhui, People's Republic of China. ORCID
  9. Yanyan Liu: Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
  10. Jiabin Li: Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
  11. Xiaohui Huang: Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.

Abstract

Purpose: We aimed to evaluate the synergistic effect of linezolid and fosfomycin on fosfomycin-sensitive and -resistant clinical isolates in vitro and in vivo and whether the emergence of fosfomycin resistance in is associated with changes in strain virulence, from the perspective of fitness cost.
Methods: The synergistic effect of linezolid and fosfomycin was studied via in vitro checkerboard and static time-kill assays, as well as based on the in vivo survival rate and hemolymph load of a infection model. Fosfomycin resistance was induced via a stepwise increase in concentration. Changes in the virulence of the strains after drug resistance were investigated using the infection model and reverse transcription quantitative polymerase chain reaction (RT-qPCR). In vitro and in vivo growth curves and competitive experiments were used to study the fitness cost of the strain. Finally, a static time-kill assay was performed to explore the effect of the combined medication.
Results: In vitro and in vivo data showed that linezolid combined with fosfomycin had a good synergistic effect on treatment. The infection model and RT-qPCR data showed that the virulence of the resistant strains was weakened to varying degrees. A survival curve and competition experimental data showed that this was related to the fitness cost of strains while acquiring resistance and negatively impacted linezolid treatment; however, the combination still showed a good synergistic effect in drug-resistant strains.
Conclusion: Linezolid combined with fosfomycin had a synergistic effect on both fosfomycin-sensitive and -resistant strains. Strains incur fitness costs as they develop drug resistance, which leads to a decrease in virulence. There is an interaction between fitness cost, virulence, and drug resistance, which indirectly affects drug treatment.

Keywords

References

  1. Antibiotics (Basel). 2021 Feb 22;10(2): [PMID: 33671753]
  2. Antibiotics (Basel). 2021 Sep 27;10(10): [PMID: 34680753]
  3. Crit Care Med. 2018 Oct;46(10):1634-1642 [PMID: 29957707]
  4. Infect Drug Resist. 2018 Aug 08;11:1105-1117 [PMID: 30127628]
  5. Virulence. 2018 Dec 31;9(1):860-865 [PMID: 29726300]
  6. Diagn Microbiol Infect Dis. 2021 Feb;99(2):115241 [PMID: 33130503]
  7. Clin Microbiol Rev. 2019 Jan 30;32(2): [PMID: 30700430]
  8. J Antimicrob Chemother. 2020 Aug 1;75(8):2173-2181 [PMID: 32357212]
  9. Antimicrob Agents Chemother. 2007 Apr;51(4):1287-92 [PMID: 17242144]
  10. J Antimicrob Chemother. 2012 Jun;67(6):1325-32 [PMID: 22378682]
  11. Antibiotics (Basel). 2021 Jul 19;10(7): [PMID: 34356793]
  12. Helicobacter. 2021 Aug;26(4):e12808 [PMID: 33884706]
  13. Nat Med. 2006 May;12(5):515-7 [PMID: 16633349]
  14. Infect Drug Resist. 2021 Feb 24;14:639-649 [PMID: 33658805]
  15. J Antimicrob Chemother. 2018 Mar 1;73(3):709-719 [PMID: 29253153]
  16. PLoS Genet. 2018 Sep 4;14(9):e1007525 [PMID: 30180166]
  17. Int J Antimicrob Agents. 2020 Jul;56(1):105935 [PMID: 32156620]
  18. Nat Rev Microbiol. 2019 Jan;17(2):82-94 [PMID: 30337708]
  19. J Am Coll Cardiol. 2019 Nov 12;74(19):2435-2436 [PMID: 31699288]
  20. Front Microbiol. 2019 Aug 28;10:2001 [PMID: 31555237]
  21. Infect Drug Resist. 2019 Nov 12;12:3497-3505 [PMID: 31814738]
  22. Nat Microbiol. 2021 Jan;6(1):103-111 [PMID: 33106672]
  23. Evol Appl. 2015 Mar;8(3):273-83 [PMID: 25861385]
  24. Front Cell Infect Microbiol. 2021 Dec 22;11:782733 [PMID: 35004350]
  25. Pharmaceutics. 2021 Aug 31;13(9): [PMID: 34575453]
  26. BMC Complement Altern Med. 2018 May 30;18(1):169 [PMID: 29848316]
  27. Biomed Res Int. 2016;2016:6413982 [PMID: 27366751]
  28. J Hosp Infect. 2018 Jul;99(3):346-355 [PMID: 29066140]
  29. Antibiotics (Basel). 2022 Mar 24;11(4): [PMID: 35453188]
  30. Eur J Clin Pharmacol. 2022 Aug;78(8):1301-1310 [PMID: 35610318]
  31. mSphere. 2019 Feb 13;4(1): [PMID: 30760612]
  32. Int J Med Microbiol. 2021 Feb;311(2):151477 [PMID: 33524636]
  33. Front Pharmacol. 2022 Jan 28;12:773994 [PMID: 35153743]
  34. Tuberculosis (Edinb). 2021 Jul;129:102091 [PMID: 34090078]
  35. J Glob Antimicrob Resist. 2020 Sep;22:78-83 [PMID: 32007618]
  36. Genome Biol. 2018 Jul 18;19(1):94 [PMID: 30021593]
  37. Front Microbiol. 2021 Dec 14;12:779885 [PMID: 34970238]
  38. J Antimicrob Chemother. 2020 Jul 1;75(7):1704-1711 [PMID: 32129849]
  39. Inflammation. 2021 Dec;44(6):2429-2447 [PMID: 34505975]
  40. J Antibiot (Tokyo). 2017 Feb;70(2):166-173 [PMID: 27756910]
  41. Pathogens. 2021 Nov 14;10(11): [PMID: 34832638]
  42. Expert Rev Anti Infect Ther. 2022 Jan;20(1):33-43 [PMID: 34030567]
  43. Ann Transl Med. 2022 Feb;10(3):148 [PMID: 35284561]
  44. Diagn Microbiol Infect Dis. 2018 Jun;91(2):161-163 [PMID: 29496381]
  45. BMC Microbiol. 2020 Jun 15;20(1):162 [PMID: 32539684]
  46. Pharmacotherapy. 2019 Nov;39(11):1077-1094 [PMID: 31487056]
  47. Front Microbiol. 2021 Feb 09;11:605962 [PMID: 33633692]
  48. Nat Microbiol. 2021 Nov;6(11):1410-1423 [PMID: 34697460]
  49. Nat Rev Microbiol. 2017 Jul;15(7):382-383 [PMID: 28579609]
  50. Int J Antimicrob Agents. 2019 Jan;53(1):22-28 [PMID: 30268576]
  51. Antibiotics (Basel). 2021 Dec 17;10(12): [PMID: 34943757]
  52. Pathol Biol (Paris). 2012 Apr;60(2):e9-14 [PMID: 19942376]
  53. Clin Infect Dis. 2004 Jan 1;38(1):155-6 [PMID: 14679466]
  54. Front Vet Sci. 2022 Feb 11;9:801800 [PMID: 35224081]
  55. Infect Drug Resist. 2019 Jul 11;12:2049-2057 [PMID: 31372012]
  56. Int J Med Microbiol. 2017 Dec;307(8):452-459 [PMID: 28986014]
  57. Emerg Infect Dis. 2017 Nov;23(11):1902-1904 [PMID: 29048285]
  58. J Microbiol Immunol Infect. 2017 Feb;50(1):55-61 [PMID: 25682237]
  59. Expert Opin Investig Drugs. 2009 Jul;18(7):921-44 [PMID: 19548851]
  60. Front Med (Lausanne). 2021 Sep 10;8:720647 [PMID: 34568377]
  61. J Antimicrob Chemother. 2007 Jan;59(1):28-34 [PMID: 17065188]
  62. Microbiol Spectr. 2021 Dec 22;9(3):e0087121 [PMID: 34851157]
  63. Eur J Clin Microbiol Infect Dis. 2018 Aug;37(8):1441-1448 [PMID: 29909468]
  64. BMC Genomics. 2019 Oct 22;20(1):761 [PMID: 31640552]
  65. J Microbiol Immunol Infect. 2020 Oct;53(5):731-738 [PMID: 30638785]
  66. Sci Rep. 2016 Jan 18;6:19262 [PMID: 26778774]
  67. Eur Rev Med Pharmacol Sci. 2020 Sep;24(18):9274-9281 [PMID: 33015768]
  68. mBio. 2020 Feb 11;11(1): [PMID: 32047136]
  69. Front Microbiol. 2014 Nov 10;5:544 [PMID: 25426104]
  70. J Fungi (Basel). 2021 Nov 26;7(12): [PMID: 34946994]
  71. Clin Infect Dis. 2015 Oct 15;61Suppl 3:S147-54 [PMID: 26409276]
  72. mBio. 2017 Feb 21;8(1): [PMID: 28223450]

Word Cloud

Created with Highcharts 10.0.0resistanceeffectfosfomycinvirulencefitnesssynergisticlinezolidvitrocoststrainsvivodrugshowedinfectionmodelcombineddatatreatmentfosfomycin-sensitive-resistantstrainviastatictime-killsurvivalFosfomycinRT-qPCRgoodLinezolidPurpose:aimedevaluateclinicalisolateswhetheremergenceassociatedchangesperspectiveMethods:studiedcheckerboardassayswellbasedratehemolymphloadinducedstepwiseincreaseconcentrationChangesinvestigatedusingreversetranscriptionquantitativepolymerasechainreactiongrowthcurvescompetitiveexperimentsusedstudyFinallyassayperformedexploremedicationResults:resistantweakenedvaryingdegreescurvecompetitionexperimentalrelatedacquiringnegativelyimpactedhowevercombinationstilldrug-resistantConclusion:StrainsincurcostsdevelopleadsdecreaseinteractionindirectlyaffectsAssessingEmergenceResistanceInvivo:CombinedFosfomycin-SensitiveResistant

Similar Articles

Cited By