Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target.

Basheer Abdullah Marzoog
Author Information
  1. Basheer Abdullah Marzoog: Medical school student at National Research, Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, Mordovia republic, Bolshevitskaya Street, 31, 430005 Saransk, Russia. ORCID

Abstract

Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected process. Fortunately, the body's defense system can solve and compensate for the impaired function through its multi-level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic tactics and advance the research forward to find new therapeutic targets.

Keywords

References

  1. J Appl Toxicol. 2017 Aug;37(8):895-901 [PMID: 27862064]
  2. Int J Mol Med. 2021 Apr;47(4): [PMID: 33537821]
  3. Curr Hypertens Rep. 2018 Feb 26;20(2):12 [PMID: 29480368]
  4. Oxid Med Cell Longev. 2020 Dec 26;2020:8830537 [PMID: 33425218]
  5. Acta Pharmacol Sin. 2021 Oct;42(10):1598-1609 [PMID: 33495519]
  6. J Endocrinol. 2021 Apr;249(1):1-18 [PMID: 33504680]
  7. Diabetol Metab Syndr. 2020 Jan 07;12:2 [PMID: 31921359]
  8. Arterioscler Thromb Vasc Biol. 2020 Sep;40(9):2002-2017 [PMID: 32698685]
  9. mBio. 2020 Dec 11;11(6): [PMID: 33310781]
  10. Antioxidants (Basel). 2021 Jan 21;10(2): [PMID: 33494379]
  11. Exp Gerontol. 2021 May;147:111269 [PMID: 33529748]
  12. PLoS One. 2016 Jul 06;11(7):e0158619 [PMID: 27383386]
  13. J Cell Physiol. 2019 Aug;234(8):12149-12160 [PMID: 30585633]
  14. Cardiol Res. 2020 Dec;11(6):360-365 [PMID: 33224380]
  15. Int J Mol Sci. 2017 Dec 14;18(12): [PMID: 29240668]
  16. Exp Cell Res. 2021 Mar 15;400(2):112485 [PMID: 33515594]
  17. Clin Exp Hypertens. 2019;41(2):174-180 [PMID: 29667441]
  18. Clin Chim Acta. 2019 Sep;496:35-44 [PMID: 31229566]
  19. Afr Health Sci. 2020 Sep;20(3):1329-1336 [PMID: 33402982]
  20. Lancet. 2020 May 2;395(10234):1417-1418 [PMID: 32325026]
  21. Exp Physiol. 2021 Mar;106(3):771-788 [PMID: 33450088]
  22. Crit Rev Food Sci Nutr. 2017 Nov 2;57(16):3421-3429 [PMID: 26745681]
  23. Front Physiol. 2021 Jan 15;11:605908 [PMID: 33519510]
  24. Arch Med Res. 2014 Nov;45(8):753-64 [PMID: 25446614]
  25. Front Pharmacol. 2020 Nov 30;11:603226 [PMID: 33390992]
  26. Oxid Med Cell Longev. 2016;2016:3164734 [PMID: 26881021]
  27. Int Immunopharmacol. 2021 Apr;93:107388 [PMID: 33529913]
  28. Blood Transfus. 2021 Sep;19(5):420-427 [PMID: 33539284]
  29. Metabolism. 2021 Apr;117:154710 [PMID: 33485865]
  30. J Exp Med. 2021 Apr 5;218(4): [PMID: 33533918]
  31. Curr Diabetes Rev. 2022;18(6):e150921196497 [PMID: 34525924]
  32. Rev Cardiovasc Med. 2020 Sep 30;21(3):315-319 [PMID: 33070537]
  33. Curr Diabetes Rev. 2022 Apr 29;: [PMID: 35507784]
  34. Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5839-5848 [PMID: 29802228]
  35. Biomed Res Int. 2021 Jan 6;2021:3210586 [PMID: 33506012]
  36. Transl Res. 2017 May;183:57-70 [PMID: 28130064]
  37. Biomolecules. 2021 Jan 15;11(1): [PMID: 33467512]
  38. J Obes. 2020 Aug 26;2020:5762395 [PMID: 32963827]
  39. J Nutr Biochem. 2018 Aug;58:1-16 [PMID: 29621669]
  40. Front Cardiovasc Med. 2021 Jan 18;7:599334 [PMID: 33537347]
  41. Cell Stress Chaperones. 2012 Sep;17(5):615-21 [PMID: 22457223]
  42. J Pediatr (Rio J). 2019 Sep - Oct;95(5):503-505 [PMID: 30076788]
  43. J Periodontal Implant Sci. 2019 Apr 24;49(2):105-113 [PMID: 31098331]
  44. Eur Heart J Case Rep. 2020 Dec 25;5(1):ytaa488 [PMID: 33542975]
  45. J Adv Res. 2020 May 19;27:99-113 [PMID: 33318870]
  46. Redox Biol. 2021 Feb;39:101811 [PMID: 33360774]
  47. Free Radic Biol Med. 2021 Apr;166:255-264 [PMID: 33539947]
  48. Cells. 2020 Jul 20;9(7): [PMID: 32698397]
  49. Toxicol Mech Methods. 2017 Mar;27(3):191-200 [PMID: 27997269]
  50. Int J Environ Res Public Health. 2021 Feb 01;18(3): [PMID: 33535693]
  51. Vascul Pharmacol. 2019 Mar;114:76-92 [PMID: 30300747]
  52. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):33-46 [PMID: 31766917]
  53. Clin Chest Med. 2021 Mar;42(1):167-177 [PMID: 33541610]
  54. Pharmacol Res. 2021 May;167:105471 [PMID: 33529749]
  55. J Diabetes Metab Disord. 2020 Aug 10;19(2):1045-1059 [PMID: 33520822]
  56. Tob Induc Dis. 2021 Jan 28;19:08 [PMID: 33542680]
  57. Angiology. 2021 Aug;72(7):604-615 [PMID: 33504167]
  58. Cells. 2021 Feb 03;10(2): [PMID: 33546399]
  59. J Assoc Physicians India. 2021 Feb;69(2):39-42 [PMID: 33527810]
  60. Curr Drug Targets. 2021;22(15):1738-1749 [PMID: 33494668]
  61. EXCLI J. 2020 Aug 20;19:1186-1195 [PMID: 33408593]
  62. Diab Vasc Dis Res. 2013 Nov;10(6):472-82 [PMID: 24002671]
  63. Int J Mol Sci. 2020 Dec 19;21(24): [PMID: 33352699]
  64. Front Cardiovasc Med. 2020 Dec 10;7:584791 [PMID: 33363219]
  65. Ther Adv Cardiovasc Dis. 2017 Aug;11(8):215-225 [PMID: 28639538]
  66. J Atheroscler Thromb. 2022 Feb 1;29(2):242-251 [PMID: 33518614]
  67. PeerJ. 2021 Jan 14;9:e10723 [PMID: 33520470]
  68. Probl Endokrinol (Mosk). 2020 Aug 04;66(1):47-55 [PMID: 33351312]
  69. Stem Cells Int. 2018 Oct 22;2018:4274361 [PMID: 30425746]
  70. Int J Mol Med. 2006 Nov;18(5):969-74 [PMID: 17016629]
  71. Vascul Pharmacol. 2021 Jun;138:106841 [PMID: 33545365]
  72. Adv Exp Med Biol. 2017;960:1-17 [PMID: 28585193]
  73. Mediators Inflamm. 2016;2016:3634948 [PMID: 27413253]
  74. Biomedicines. 2020 Oct 12;8(10): [PMID: 33053883]
  75. ACS Biomater Sci Eng. 2021 Apr 12;7(4):1600-1607 [PMID: 33545000]
  76. Cell Death Dis. 2013 Apr 04;4:e582 [PMID: 23559016]
  77. Crit Care. 2021 Feb 4;25(1):48 [PMID: 33541396]
  78. J Cell Mol Med. 2018 Oct;22(10):4948-4962 [PMID: 30063118]
  79. Atherosclerosis. 2021 Mar;320:53-60 [PMID: 33540179]
  80. Biomedicines. 2020 Dec 27;9(1): [PMID: 33375461]
  81. Thromb Haemost. 2021 May;121(5):676-686 [PMID: 33506473]
  82. Eur Heart J Cardiovasc Pharmacother. 2021 May 23;7(3):e2-e3 [PMID: 33377481]
  83. Curr Opin Organ Transplant. 2021 Apr 1;26(2):207-219 [PMID: 33528222]
  84. Kardiologiia. 2020 Sep 17;60(8):98-105 [PMID: 33155965]
  85. Semin Immunopathol. 2018 Feb;40(2):215-224 [PMID: 29209827]
  86. World J Gastroenterol. 2014 Nov 21;20(43):16079-94 [PMID: 25473159]
  87. Rev Endocr Metab Disord. 2013 Mar;14(1):13-9 [PMID: 23306780]
  88. J Endocrinol. 2021 Feb;248(2):95-106 [PMID: 33337344]
  89. J Transl Med. 2021 Feb 4;19(1):52 [PMID: 33541367]
  90. Echocardiography. 2021 Mar;38(3):450-459 [PMID: 33539572]
  91. Nutrients. 2017 Oct 22;9(10): [PMID: 29065507]
  92. Front Pharmacol. 2020 Nov 30;11:590614 [PMID: 33328998]
  93. Biomed Pharmacother. 2004 Oct;58 Suppl 1:S56-68 [PMID: 15754841]
  94. J Cell Mol Med. 2021 Feb;25(4):1884-1895 [PMID: 33369150]
  95. Cardiovasc Res. 2022 Jan 7;118(1):196-211 [PMID: 33483741]
  96. Biochem Soc Trans. 2021 Feb 26;49(1):313-325 [PMID: 33522573]
  97. Cardiovasc Hematol Agents Med Chem. 2018;16(1):20-34 [PMID: 29804539]
  98. Front Pharmacol. 2020 Mar 04;11:148 [PMID: 32194403]

Word Cloud

Created with Highcharts 10.0.0syndromemetabolicphysiologicaltherapeuticmolecularresistanceorganismhomeostasisprocessescanendotheliumactivityendothelialadvancesemergenceinsulinmaintainingspecificdefensefunctionmechanismsdistributionstresscellstargetdysfunctionCurrentpathobiologyendotheliocytesdysfunctionspromisingfindingpathogeneticlinksPhysiologicallyhumanstrictlycontrolledmaintainacquaintedlevelManyfactorsinvolveddeviationundoubtedlyaccompaniedpathologiesrelatedaffectedprocessFortunatelybody'ssystemsolvecompensateimpairedmulti-levelessentialabilitymodulatePathologicalimpairmentseemsdirectlycorrelatedacceptedhypothesisdueendoplasmicreticulumunfoldedproteinresponsedevelopmentincludesinhibitionlongnon-codingRNAsexpressioncytokinesdisbalanceApelindysregulationglycocalyxdegradationmicroparticlesClinicallyenhancementrestorationnormalnovelstrategiessinceimpairsresultsprogressioninductionameliorateNovelinsightscellconciselyrepresentedpaperenhancepresenttacticsadvanceresearchforwardfindnewtargetsRecentbiologypathophysiology:potentialCOVID-19EndothelialInsulinLipidperoxidationMetabolicNitricoxideOxidativePathogenesis

Similar Articles

Cited By