Suppressors of fixation can increase average fitness beyond amplifiers of selection.

Nikhil Sharma, Arne Traulsen
Author Information
  1. Nikhil Sharma: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Pl��n, Germany. ORCID
  2. Arne Traulsen: Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Pl��n, Germany. ORCID

Abstract

Evolutionary dynamics on graphs has remarkable features: For example, it has been shown that amplifiers of selection exist that-compared to an unstructured population-increase the fixation probability of advantageous mutations, while they decrease the fixation probability of disadvantageous mutations. So far, the theoretical literature has focused on the case of a single mutant entering a graph-structured population, asking how the graph affects the probability that a mutant takes over a population and the time until this typically happens. For continuously evolving systems, the more relevant case is that mutants constantly arise in an evolving population. Typically, such mutations occur with a small probability during reproduction events. We thus focus on the low mutation rate limit. The probability distribution for the fitness in this process converges to a steady state at long times. Intuitively, amplifiers of selection are expected to increase the population's mean fitness in the steady state. Similarly, suppressors of selection are expected to decrease the population's mean fitness in the steady state. However, we show that another set of graphs, called suppressors of fixation, can attain the highest population mean fitness. The key reason behind this is their ability to efficiently reject deleterious mutants. This illustrates the importance of the deleterious mutant regime for the long-term evolutionary dynamics, something that seems to have been overlooked in the literature so far.

Keywords

References

  1. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  2. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  3. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  4. Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200731 [PMID: 33216835]
  5. Sci Rep. 2019 May 6;9(1):6946 [PMID: 31061385]
  6. R Soc Open Sci. 2022 May 11;9(5):220011 [PMID: 35573040]
  7. Nat Rev Genet. 2005 Feb;6(2):119-27 [PMID: 15716908]
  8. R Soc Open Sci. 2015 Apr 29;2(4):140465 [PMID: 26064637]
  9. PLoS Comput Biol. 2022 Mar 4;18(3):e1009877 [PMID: 35245282]
  10. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  11. Theor Popul Biol. 1983 Apr;23(2):202-15 [PMID: 6612632]
  12. Nat Commun. 2021 Jun 29;12(1):4009 [PMID: 34188036]
  13. Q Rev Biol. 2014 Sep;89(3):225-52 [PMID: 25195318]
  14. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14966-9 [PMID: 14657359]
  15. PLoS Comput Biol. 2024 Mar 15;20(3):e1011905 [PMID: 38489353]
  16. Theor Popul Biol. 2015 Feb;99:98-113 [PMID: 25450112]
  17. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  18. Phys Rev E. 2017 Jul;96(1-1):012313 [PMID: 29347209]
  19. Genetica. 1998;102-103(1-6):525-33 [PMID: 9720296]
  20. J Theor Biol. 2014 Oct 7;358:149-65 [PMID: 24882790]
  21. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  22. Nature. 1968 Feb 17;217(5129):624-6 [PMID: 5637732]
  23. Phys Rev Lett. 2021 Nov 19;127(21):218102 [PMID: 34860074]
  24. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  25. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  26. Phys Rev E. 2019 Jul;100(1-1):012408 [PMID: 31499887]
  27. Biol Direct. 2016 Aug 23;11:41 [PMID: 27549612]
  28. PLoS Comput Biol. 2018 Nov 12;14(11):e1006559 [PMID: 30419017]
  29. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  30. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  31. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9541-6 [PMID: 15980155]
  32. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  33. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042707 [PMID: 26565272]
  34. J Math Biol. 2012 Apr;64(5):803-27 [PMID: 21626364]
  35. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  36. J Math Biol. 2021 Feb 3;82(3):14 [PMID: 33534054]
  37. Nature. 1975 May 15;255(5505):197-200 [PMID: 1143315]

MeSH Term

Biological Evolution
Genetic Fitness
Models, Genetic
Mutation
Population Dynamics
Probability
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0probabilityfitnessselectionfixationmutantpopulationamplifiersmutationssteadystatemeandeleteriousdynamicsgraphsdecreasefarliteraturecasegraphevolvingmutantslowmutationexpectedincreasepopulation'ssuppressorscanregimeevolutionaryEvolutionaryremarkablefeatures:exampleshownexistthat-comparedunstructuredpopulation-increaseadvantageousdisadvantageoustheoreticalfocusedsingleenteringgraph-structuredaskingaffectstakestimetypicallyhappenscontinuouslysystemsrelevantconstantlyariseTypicallyoccursmallreproductioneventsthusfocusratelimitdistributionprocessconvergeslongtimesIntuitivelySimilarlyHowevershowanothersetcalledattainhighestkeyreasonbehindabilityefficientlyrejectillustratesimportancelong-termsomethingseemsoverlookedSuppressorsaveragebeyondtheoryratesmutation-selectionbalance

Similar Articles

Cited By