Manipulating Interactions between Dielectric Particles with Electric Fields: A General Electrostatic Many-Body Framework.

Muhammad Hassan, Connor Williamson, Joshua Baptiste, Stefanie Braun, Anthony J Stace, Elena Besley, Benjamin Stamm
Author Information
  1. Muhammad Hassan: Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005Paris, France.
  2. Connor Williamson: School of Chemistry, University of Nottingham, University Park, NG7 2RD, United Kingdom. ORCID
  3. Joshua Baptiste: School of Chemistry, University of Nottingham, University Park, NG7 2RD, United Kingdom.
  4. Stefanie Braun: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany.
  5. Anthony J Stace: School of Chemistry, University of Nottingham, University Park, NG7 2RD, United Kingdom. ORCID
  6. Elena Besley: School of Chemistry, University of Nottingham, University Park, NG7 2RD, United Kingdom. ORCID
  7. Benjamin Stamm: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany. ORCID

Abstract

We derive a rigorous analytical formalism and propose a numerical method for the quantitative evaluation of the electrostatic interactions between dielectric particles in an external electric field. This formalism also allows for inhomogeneous charge distributions, and, in particular, for the presence of pointlike charges on the particle surface. The theory is based on a boundary integral equation framework and yields analytical expressions for the interaction energy and net forces that can be computed in linear scaling cost, with respect to the number of interacting particles. We include numerical results that validate the proposed method and show the limitations of the fixed dipole approximation at small separation between interacting particles. The proposed method is also applied to study the stability and melting of ionic colloidal crystals in an external electric field.

References

  1. Small. 2020 Apr;16(14):e2000442 [PMID: 32181972]
  2. Phys Rev Lett. 2014 Jul 4;113(1):017801 [PMID: 25032932]
  3. J Chem Phys. 2014 Feb 14;140(6):064903 [PMID: 24527936]
  4. Nature. 2003 Jan 30;421(6922):513-7 [PMID: 12556887]
  5. Soft Matter. 2018 Jul 4;14(26):5480-5487 [PMID: 29926874]
  6. J Chem Phys. 2020 Jan 14;152(2):024121 [PMID: 31941309]
  7. Langmuir. 2011 Jan 4;27(1):7-10 [PMID: 21128604]
  8. Nanotechnology. 2005 Oct;16(10):1986-92 [PMID: 20817960]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013307 [PMID: 23410460]
  10. Science. 2001 Apr 13;292(5515):258-62 [PMID: 11303095]
  11. J Chem Phys. 2019 Oct 21;151(15):154113 [PMID: 31640356]
  12. J Chem Phys. 2014 Jul 21;141(3):034115 [PMID: 25053309]
  13. Science. 2002 Apr 5;296(5565):104-6 [PMID: 11935020]
  14. J Chem Phys. 2008 Jun 7;128(21):214505 [PMID: 18537431]
  15. Nat Commun. 2014 Apr 23;5:3676 [PMID: 24759549]
  16. J Chem Phys. 2016 Sep 28;145(12):124903 [PMID: 27782617]
  17. Science. 2004 May 7;304(5672):847-50 [PMID: 15131300]
  18. J Chem Theory Comput. 2018 Feb 13;14(2):905-915 [PMID: 29251927]
  19. Adv Colloid Interface Sci. 2018 Jan;251:97-114 [PMID: 29174673]
  20. Science. 2006 Apr 21;312(5772):420-4 [PMID: 16497885]
  21. Nature. 2005 Sep 8;437(7056):235-40 [PMID: 16148929]
  22. J Chem Phys. 2016 Aug 28;145(8):084103 [PMID: 27586900]
  23. J Chem Phys. 2010 Jul 14;133(2):024105 [PMID: 20632746]
  24. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Oct;48(4):2721-2738 [PMID: 9960905]
  25. J Chem Theory Comput. 2006 May;2(3):541-55 [PMID: 26626662]
  26. Science. 2000 Jan 14;287(5451):290-3 [PMID: 10634780]
  27. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16063-7 [PMID: 19805259]
  28. Chem Rev. 2013 Jul 10;113(7):5194-261 [PMID: 23557169]
  29. Langmuir. 2019 Apr 23;35(16):5496-5500 [PMID: 30916558]
  30. J Colloid Interface Sci. 2016 May 1;469:237-241 [PMID: 26896771]
  31. Nat Mater. 2004 Feb;3(2):106-10 [PMID: 14743215]
  32. Phys Rev Lett. 2008 Feb 8;100(5):058302 [PMID: 18352441]
  33. J Gen Physiol. 1973 May;61(5):638-54 [PMID: 4705641]
  34. Science. 2000 Jan 28;287(5453):627-31 [PMID: 10649991]

Word Cloud

Created with Highcharts 10.0.0methodparticlesanalyticalformalismnumericalexternalelectricfieldalsointeractingproposedderiverigorousproposequantitativeevaluationelectrostaticinteractionsdielectricallowsinhomogeneouschargedistributionsparticularpresencepointlikechargesparticlesurfacetheorybasedboundaryintegralequationframeworkyieldsexpressionsinteractionenergynetforcescancomputedlinearscalingcostrespectnumberincluderesultsvalidateshowlimitationsfixeddipoleapproximationsmallseparationappliedstudystabilitymeltingioniccolloidalcrystalsManipulatingInteractionsDielectricParticlesElectricFields:GeneralElectrostaticMany-BodyFramework

Similar Articles

Cited By (2)