Data-driven causal model discovery and personalized prediction in Alzheimer's disease.

Haoyang Zheng, Jeffrey R Petrella, P Murali Doraiswamy, Guang Lin, Wenrui Hao, Alzheimer���s Disease Neuroimaging Initiative
Author Information
  1. Haoyang Zheng: School of Mechanical Engineering, Purdue University, West Lafayette, 47907, IN, USA. ORCID
  2. Jeffrey R Petrella: Department of Radiology, Duke University Health System, Durham, 27710, NC, USA. ORCID
  3. P Murali Doraiswamy: Departments of Psychiatry and Medicine, Duke University School of Medicine and Duke Institute for Brain Sciences, Durham, 27710, NC, USA.
  4. Guang Lin: School of Mechanical Engineering, Purdue University, West Lafayette, 47907, IN, USA. guanglin@purdue.edu. ORCID
  5. Wenrui Hao: Department of Mathematics, Penn State University, University Park, 16802, PA, USA.

Abstract

With the explosive growth of biomarker data in Alzheimer's disease (AD) clinical trials, numerous mathematical models have been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely empiric, others are causal, built upon various hypotheses of AD pathophysiology, a complex and incompletely understood area of research. One of the most challenging problems in computational causal modeling is using a purely data-driven approach to derive the model's parameters and the mathematical model itself, without any prior hypothesis bias. In this paper, we develop an innovative data-driven modeling approach to build and parameterize a causal model to characterize the trajectories of AD biomarkers. This approach integrates causal model learning, population parameterization, parameter sensitivity analysis, and personalized prediction. By applying this integrated approach to a large multicenter database of AD biomarkers, the Alzheimer's Disease Neuroimaging Initiative, several causal models for different AD stages are revealed. In addition, personalized models for each subject are calibrated and provide accurate predictions of future cognitive status.

References

  1. Alzheimers Dement. 2018 Apr;14(4):535-562 [PMID: 29653606]
  2. PLoS Comput Biol. 2021 Sep 8;17(9):e1009334 [PMID: 34495965]
  3. Neuron. 2013 Dec 18;80(6):1347-58 [PMID: 24360540]
  4. Neurosignals. 2008;16(1):19-23 [PMID: 18097156]
  5. Acta Neuropathol. 2011 May;121(5):597-609 [PMID: 21311900]
  6. Neuroimage. 2019 Nov 1;201:116043 [PMID: 31344486]
  7. Bull Math Biol. 2018 May;80(5):1111-1133 [PMID: 28382422]
  8. Neurodegener Dis. 2018;18(4):173-190 [PMID: 30089306]
  9. Neuroimage. 2017 May 15;152:60-77 [PMID: 28257929]
  10. Sociol Health Illn. 2018 Jul;40(6):969-987 [PMID: 29659032]
  11. Nat Genet. 2007 Jan;39(1):17-23 [PMID: 17192785]
  12. Genetics. 2018 May;209(1):51-64 [PMID: 29507048]
  13. Alzheimers Dement. 2011 May;7(3):280-92 [PMID: 21514248]
  14. Biol Psychiatry. 2021 Apr 15;89(8):786-794 [PMID: 32919611]
  15. Bull Math Biol. 2015 May;77(5):758-81 [PMID: 25205457]
  16. Nat Rev Neurol. 2020 Aug;16(8):440-456 [PMID: 32669685]
  17. Eur J Neurol. 2018 Jan;25(1):59-70 [PMID: 28872215]
  18. Stat Methods Med Res. 2019 Mar;28(3):835-845 [PMID: 29168432]
  19. Brain Inform. 2019 Jun 28;6(1):6 [PMID: 31254120]
  20. Alzheimers Dement. 2013 Sep;9(5):e111-94 [PMID: 23932184]
  21. Front Physiol. 2021 Jul 16;12:702975 [PMID: 34335308]
  22. BMC Syst Biol. 2016 Nov 18;10(1):108 [PMID: 27863488]
  23. Curr Drug Metab. 2018;19(8):704-713 [PMID: 29512457]
  24. Cancers (Basel). 2021 May 27;13(11): [PMID: 34071939]
  25. J Am Coll Cardiol. 2020 Mar 3;75(8):942-951 [PMID: 32130930]
  26. Life Sci. 2020 Sep 1;256:117996 [PMID: 32585249]
  27. Comput Math Methods Med. 2019 Feb 03;2019:6216530 [PMID: 30863455]
  28. PLoS One. 2017 Feb 17;12(2):e0170807 [PMID: 28212412]
  29. Brain. 2009 May;132(Pt 5):1355-65 [PMID: 19339253]
  30. Neuroimage. 2012 Nov 15;63(3):1478-86 [PMID: 22885136]
  31. Alzheimers Dement (N Y). 2019 Jul 18;5:308-318 [PMID: 31367671]
  32. Curr Neuropharmacol. 2019;17(3):288-294 [PMID: 30227819]

Grants

  1. R35 GM146894/NIGMS NIH HHS
  2. DE-SC0021142/DOE | Office of Science (SC)
  3. DMS-2052685/NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
  4. DMS-2053746/NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
  5. DMS-2052676/NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
  6. DMS-1736364/NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)
  7. DMS-2134209/NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences (DMS)

Word Cloud

Created with Highcharts 10.0.0causalADmodelsapproachmodelAlzheimer'spersonalizedbiomarkerdiseasemathematicalcharacterizetrajectoriespurelymodelingdata-drivenbiomarkerspredictionexplosivegrowthdataclinicaltrialsnumerousdevelopeddisease-relevanttimeempiricothersbuiltuponvarioushypothesespathophysiologycomplexincompletelyunderstoodarearesearchOnechallengingproblemscomputationalusingderivemodel'sparameterswithoutpriorhypothesisbiaspaperdevelopinnovativebuildparameterizeintegrateslearningpopulationparameterizationparametersensitivityanalysisapplyingintegratedlargemulticenterdatabaseDiseaseNeuroimagingInitiativeseveraldifferentstagesrevealedadditionsubjectcalibratedprovideaccuratepredictionsfuturecognitivestatusData-drivendiscovery

Similar Articles

Cited By