Liposomal Delivery of Newly Identified Prophage Lysins in a Model.

Diana Morais, Luís Tanoeiro, Andreia T Marques, Tiago Gonçalves, Aida Duarte, António Pedro Alves Matos, Joana S Vital, Maria Eugénia Meirinhos Cruz, Manuela Colla Carvalheiro, Elsa Anes, Jorge M B Vítor, Maria Manuela Gaspar, Filipa F Vale
Author Information
  1. Diana Morais: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
  2. Luís Tanoeiro: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  3. Andreia T Marques: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  4. Tiago Gonçalves: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
  5. Aida Duarte: Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal. ORCID
  6. António Pedro Alves Matos: Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal.
  7. Joana S Vital: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
  8. Maria Eugénia Meirinhos Cruz: Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
  9. Manuela Colla Carvalheiro: Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  10. Elsa Anes: Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  11. Jorge M B Vítor: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  12. Maria Manuela Gaspar: Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. ORCID
  13. Filipa F Vale: Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.

Abstract

is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of . Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria , used as the model.

Keywords

References

  1. Biol Direct. 2007 Dec 06;2:36 [PMID: 18062816]
  2. Acta Histochem. 2018 May;120(4):303-311 [PMID: 29606555]
  3. mBio. 2014 Jul 01;5(4):e01379-14 [PMID: 24987094]
  4. Int J Pharm. 2020 Nov 15;589:119780 [PMID: 32860856]
  5. J Appl Microbiol. 2011 Mar;110(3):778-85 [PMID: 21241420]
  6. PLoS One. 2011;6(6):e20515 [PMID: 21694774]
  7. Nanomedicine. 2015 Oct;11(7):1851-60 [PMID: 26169150]
  8. Front Microbiol. 2021 May 25;12:660403 [PMID: 34113327]
  9. Microbiol Rev. 1992 Sep;56(3):395-411 [PMID: 1406489]
  10. Int J Mol Sci. 2018 Jun 21;19(7): [PMID: 29933614]
  11. Pharmaceutics. 2021 Mar 02;13(3): [PMID: 33801281]
  12. Front Immunol. 2018 Oct 16;9:2252 [PMID: 30459750]
  13. Molecules. 2021 Apr 02;26(7): [PMID: 33918529]
  14. Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents [PMID: 12794192]
  15. BMC Genomics. 2014 Nov 27;15:1027 [PMID: 25428721]
  16. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33 [PMID: 23609542]
  17. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  18. Microb Genom. 2019 Aug;5(8): [PMID: 31310202]
  19. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W470-4 [PMID: 21646336]
  20. Antimicrob Agents Chemother. 2009 Sep;53(9):3847-54 [PMID: 19451281]
  21. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  22. Postepy Hig Med Dosw (Online). 2017 Feb 14;71(0):78-91 [PMID: 28258668]
  23. Int J Antimicrob Agents. 2010 Jun;35(6):553-8 [PMID: 20219328]
  24. Pharmaceutics. 2022 Feb 27;14(3): [PMID: 35335906]
  25. Adv Virus Res. 2014;88:227-78 [PMID: 24373314]
  26. Sci Rep. 2017 Feb 16;7:42471 [PMID: 28205536]
  27. Int J Antimicrob Agents. 2015 Jun;45(6):622-6 [PMID: 25816979]
  28. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 [PMID: 33156333]
  29. N Am J Med Sci. 2012 Sep;4(9):429-34 [PMID: 23050259]
  30. Nucleic Acids Res. 2020 Jan 8;48(D1):D606-D612 [PMID: 31667520]
  31. Materials (Basel). 2019 Dec 07;12(24): [PMID: 31817881]
  32. Sci Rep. 2015 Sep 21;5:14333 [PMID: 26387443]
  33. Bioeng Bugs. 2011 Nov-Dec;2(6):306-8 [PMID: 22008941]
  34. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  35. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  36. ACS Infect Dis. 2021 Aug 13;7(8):2127-2137 [PMID: 34167300]
  37. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  38. Enzyme Microb Technol. 2019 Sep;128:40-48 [PMID: 31186109]
  39. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  40. Bacteriophage. 2011 Jan;1(1):46-49 [PMID: 21687534]
  41. Expert Rev Anti Infect Ther. 2011 Sep;9(9):775-85 [PMID: 21905786]
  42. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  43. Nucleic Acids Res. 2019 Jul 2;47(W1):W74-W80 [PMID: 31114893]
  44. Rev Esp Quimioter. 2017 Sep;30 Suppl 1:8-12 [PMID: 28882007]
  45. FEMS Microbiol Rev. 2008 Mar;32(2):149-67 [PMID: 18194336]
  46. Drug Resist Updat. 2000 Aug;3(4):247-255 [PMID: 11498392]
  47. J Vis Exp. 2007;(6):253 [PMID: 18997900]
  48. mSystems. 2020 Aug 11;5(4): [PMID: 32788409]
  49. J Exp Zool. 1998 Sep-Oct 1;282(1-2):127-32 [PMID: 9723170]
  50. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  51. Anal Biochem. 1975 Feb;63(2):414-7 [PMID: 1168420]
  52. Recent Pat Biotechnol. 2009;3(1):37-45 [PMID: 19149721]
  53. Front Microbiol. 2018 Aug 03;9:1778 [PMID: 30127777]
  54. J Virol. 2013 Apr;87(8):4558-70 [PMID: 23408602]
  55. Microorganisms. 2021 Oct 28;9(11): [PMID: 34835377]
  56. Curr Microbiol. 2017 Feb;74(2):277-283 [PMID: 27896482]
  57. Microorganisms. 2022 Feb 26;10(3): [PMID: 35336092]
  58. J Comput Biol. 2000 Feb-Apr;7(1-2):203-14 [PMID: 10890397]
  59. Virus Res. 2017 Jul 15;239:136-142 [PMID: 28192164]
  60. mSphere. 2022 Feb 23;7(1):e0101521 [PMID: 35196122]
  61. Int J Antimicrob Agents. 2008 Jan;31(1):37-45 [PMID: 18006283]
  62. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  63. Viruses. 2018 Jul 27;10(8): [PMID: 30060520]
  64. Viruses. 2017 Apr 03;9(4): [PMID: 28368359]
  65. Front Microbiol. 2020 Nov 12;11:549084 [PMID: 33281754]
  66. Front Microbiol. 2017 Feb 27;8:293 [PMID: 28289407]
  67. Adv Virus Res. 2019;103:33-70 [PMID: 30635077]

Grants

  1. PTDC/BTM-SAL/28978/2017/Fundação para a Ciência e Tecnologia
  2. PTDC/BTM-TEC/3238/2020/Fundação para a Ciência e Tecnologia
  3. CEECIND/03023/2017/Fundação para a Ciência e Tecnologia
  4. UIDB/04138/2020/Fundação para a Ciência e Tecnologia
  5. UIDP/04138/2020/Fundação para a Ciência e Tecnologia

MeSH Term

Animals
Anti-Bacterial Agents
Gram-Negative Bacteria
Gram-Positive Bacteria
Humans
Liposomes
Peptidoglycan
Prophages
Pseudomonas aeruginosa

Chemicals

Anti-Bacterial Agents
Liposomes
Peptidoglycan

Word Cloud

Created with Highcharts 10.0.0lysinsbacteriaGram-negativeliposomesmodelactivitycellresistanceGram-positivelysispeptidoglycanouterencapsulationanalysisidentificationprophagesledshowedassayscellsencapsulatedviabilityenzybioticsprophageopportunisticbacteriumpresentsseveralantibioticsthusrepresentingmajorthreathumananimalhealthPhage-derivedproductsnamelypeptidoglycan-hydrolyzingenzymescaneffectiveweaponantibiotic-resistantWhereaswithoutfacilitatedexposedlayerpossiblemembrane-protectedsuggestdeliverysystemusingBioinformaticallowed38distinctcompletewithin66genomes16newlysequenced19diversesequencefunction5proceededwetlabfourpurifiablehydrolyticbacteriallawnszymogramconstitutedautoclavedAdditionallyPa7Pa119combinedmembranepermeabilizertwosuccessfullyDPPC:DOPE:CHEMSmolarratio4:4:2averageefficiency3333%3230%respectivelyapplicationreductionresultedobservedMTTelectronmicroscopysumreportmayimportantsourcesnewshowinghighdiversityadditionfollowingincorporationablepotentiateantibacterialeffectusedLiposomalDeliveryNewlyIdentifiedProphageLysinsModelPseudomonasaeruginosaantibioticbacteriophagegram-negativephagetherapy

Similar Articles

Cited By