(R)Evolution in Allergic Rhinitis Add-On Therapy: From Probiotics to Postbiotics and Parabiotics.

Martina Capponi, Alessandra Gori, Giovanna De Castro, Giorgio Ciprandi, Caterina Anania, Giulia Brindisi, Mariangela Tosca, Bianca Laura Cinicola, Alessandra Salvatori, Lorenzo Loffredo, Alberto Spalice, Anna Maria Zicari
Author Information
  1. Martina Capponi: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy.
  2. Alessandra Gori: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy.
  3. Giovanna De Castro: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy.
  4. Giorgio Ciprandi: Allergy Clinic, Casa di Cura Villa Serena, 65013 Genoa, Italy. ORCID
  5. Caterina Anania: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy.
  6. Giulia Brindisi: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  7. Mariangela Tosca: Allergy Center, IRCCCS Ist. Giannina Gaslini, 65013 Genoa, Italy.
  8. Bianca Laura Cinicola: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  9. Alessandra Salvatori: Department of Woman and Child of General and Specialistic Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy. ORCID
  10. Lorenzo Loffredo: Department of Internal Medicine and Medical Specialties, Sapienza University, 00185 Rome, Italy. ORCID
  11. Alberto Spalice: Child Neurology Division, Department of Pediatrics, Sapienza University of Rome, 00185 Rome, Italy.
  12. Anna Maria Zicari: Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy.

Abstract

Starting from the "Hygiene Hypothesis" to the "Microflora hypothesis" we provided an overview of the symbiotic and dynamic equilibrium between microbiota and the immune system, focusing on the role of dysbiosis in atopic march, particularly on allergic rhinitis. The advent of deep sequencing technologies and metabolomics allowed us to better characterize the microbiota diversity between individuals and body sites. Each body site, with its own specific environmental niches, shapes the microbiota conditioning colonization and its metabolic functionalities. The analysis of the metabolic pathways provides a mechanistic explanation of the remote mode of communication with systems, organs, and microflora of other body sites, including the ecosystem of the upper respiratory tract. This axis may have a role in the development of respiratory allergic disease. Notably, the microbiota is significant in the development and maintenance of barrier function; influences hematopoiesis and innate immunity; and shows its critical roles in Th1, Th2, and Treg production, which are necessary to maintain immunological balance and promote tolerance, taking part in every single step of the inflammatory cascade. These are microbial biotherapy foundations, starting from probiotics up to postbiotics and parabiotics, in a still-ongoing process. When considering the various determinants that can shape microbiota, there are several factors to consider: genetic factors, environment, mode of delivery, exposure to antibiotics, and other allergy-unrelated diseases. These factors hinder the engraftment of probiotic strains but may be upgradable with postbiotic and parabiotic administration directly on molecular targets. Supplementation with postbiotics and parabiotics could represent a very exciting perspective of treatment, bypassing probiotic limitations. At present, this avenue remains theoretical and to be explored, but it will certainly be a fascinating path to follow.

Keywords

References

  1. Clin Rev Allergy Immunol. 2022 Jun 1;: [PMID: 35648372]
  2. PLoS One. 2013 Nov 06;8(11):e78257 [PMID: 24223144]
  3. Otolaryngol Head Neck Surg. 2020 Apr;162(4):566-571 [PMID: 32122241]
  4. Benef Microbes. 2018 Apr 25;9(3):465-476 [PMID: 29633635]
  5. Ital J Pediatr. 2019 Aug 13;45(1):99 [PMID: 31409392]
  6. Hepatobiliary Surg Nutr. 2017 Jun;6(3):190-192 [PMID: 28653002]
  7. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  8. Annu Rev Immunol. 2012;30:733-58 [PMID: 22224762]
  9. Allergy Asthma Proc. 2016 Jul;37(4):324-34 [PMID: 27401319]
  10. Clin Exp Allergy. 2005 Dec;35(12):1511-20 [PMID: 16393316]
  11. Allergol Int. 2019 Jan;68(1):9-16 [PMID: 30473412]
  12. Nat Rev Immunol. 2016 May 27;16(6):341-52 [PMID: 27231050]
  13. ISME J. 2017 May;11(5):1061-1074 [PMID: 28045458]
  14. Am J Rhinol Allergy. 2022 Jan 31;:19458924211073550 [PMID: 35099301]
  15. J Allergy Clin Immunol. 1991 Feb;87(2):457-67 [PMID: 1993805]
  16. Front Microbiol. 2022 May 03;13:857418 [PMID: 35591998]
  17. J Asthma Allergy. 2016 May 11;9:93-100 [PMID: 27257389]
  18. Children (Basel). 2019 Feb 05;6(2): [PMID: 30764558]
  19. Res Microbiol. 2008 Apr;159(3):187-93 [PMID: 18281199]
  20. Cell Mol Life Sci. 2019 Feb;76(3):473-493 [PMID: 30317530]
  21. Healthcare (Basel). 2021 Dec 12;9(12): [PMID: 34946441]
  22. J Asthma Allergy. 2021 Mar 25;14:265-274 [PMID: 33790581]
  23. J Allergy Clin Immunol. 2021 May;147(5):1531-1547 [PMID: 33965091]
  24. Adv Appl Microbiol. 2006;60:133-96 [PMID: 17157635]
  25. Front Pediatr. 2017 May 23;5:117 [PMID: 28589115]
  26. Nat Microbiol. 2019 Nov;4(11):1851-1861 [PMID: 31332384]
  27. Curr Opin Allergy Clin Immunol. 2020 Feb;20(1):30-35 [PMID: 31789894]
  28. Pediatr Allergy Immunol. 2022 Jan;33 Suppl 27:22-26 [PMID: 35080308]
  29. Nutrition. 2020 Oct;78:110812 [PMID: 32464473]
  30. Microorganisms. 2019 Jan 10;7(1): [PMID: 30634578]
  31. Proc Biol Sci. 2015 Dec 22;282(1821):20143085 [PMID: 26702035]
  32. Obstet Gynecol. 2011 Jul;118(1):29-38 [PMID: 21646928]
  33. Immunity. 2019 Nov 19;51(5):871-884.e6 [PMID: 31628054]
  34. Acta Biomed. 2020 Mar 19;91(1):93-96 [PMID: 32191660]
  35. Oncotarget. 2016 Aug 23;7(34):54360-54369 [PMID: 27486985]
  36. Genome Med. 2016 Aug 09;8(1):77 [PMID: 27503374]
  37. J Pediatr (Rio J). 2021 Dec 31;: [PMID: 34979134]
  38. Int J Oral Sci. 2020 Apr 30;12(1):12 [PMID: 32350240]
  39. Front Cell Dev Biol. 2020 Mar 27;8:204 [PMID: 32292784]
  40. Acta Biomed. 2020 Aug 27;91(3):e2020073 [PMID: 32921768]
  41. Biochem J. 2017 May 16;474(11):1823-1836 [PMID: 28512250]
  42. J Allergy Clin Immunol. 2015 Jul;136(1):3-13 [PMID: 26145982]
  43. Front Physiol. 2021 Oct 14;12:749544 [PMID: 34721073]
  44. Sci Transl Med. 2014 May 21;6(237):237ra65 [PMID: 24848255]
  45. PLoS One. 2015 Jul 28;10(7):e0133320 [PMID: 26218283]
  46. BMJ. 1989 Nov 18;299(6710):1259-60 [PMID: 2513902]
  47. Infect Immun. 2018 Mar 22;86(4): [PMID: 29426044]
  48. Allergy Asthma Proc. 2019 May 1;40(3):e8-e13 [PMID: 31018900]
  49. Science. 2005 Mar 25;307(5717):1915-20 [PMID: 15790844]
  50. Allergy Asthma Proc. 2020 Sep 1;41(5):357-362 [PMID: 32867890]
  51. Allergy Asthma Clin Immunol. 2019 Apr 16;15:24 [PMID: 31015846]
  52. J Allergy Clin Immunol. 2015 Oct;136(4):952-61 [PMID: 26044853]
  53. J Allergy Clin Immunol Pract. 2020 May;8(5):1492-1503 [PMID: 32389274]
  54. Science. 2017 Aug 25;357(6353):806-810 [PMID: 28775213]
  55. PLoS One. 2012;7(6):e36466 [PMID: 22719832]
  56. Cell. 2018 Aug 23;174(5):1277-1292.e14 [PMID: 30142345]
  57. Am J Health Syst Pharm. 2010 Mar 15;67(6):449-58 [PMID: 20208051]
  58. Laryngoscope. 1993 Apr;103(4 Pt 1):447-50 [PMID: 8459756]
  59. Am J Obstet Gynecol. 2014 Mar;210(3):179-93 [PMID: 24565430]
  60. NPJ Prim Care Respir Med. 2019 Sep 19;29(1):35 [PMID: 31537804]
  61. Cell Host Microbe. 2016 Jan 13;19(1):12-20 [PMID: 26764593]
  62. Cell Rep Med. 2021 Apr 29;2(5):100260 [PMID: 34095873]
  63. Science. 2011 May 20;332(6032):974-7 [PMID: 21512004]
  64. Adv Food Nutr Res. 2020;94:1-34 [PMID: 32892831]
  65. Clin Microbiol Infect. 2012 Jul;18 Suppl 4:2-4 [PMID: 22647038]
  66. Front Microbiol. 2020 Feb 25;11:301 [PMID: 32158441]
  67. Food Sci Biotechnol. 2020 Sep 16;30(4):487-496 [PMID: 33936839]
  68. Allergy Asthma Proc. 2008 Jan-Feb;29(1):1-6 [PMID: 18302831]
  69. Allergy. 2019 Nov;74(11):2103-2115 [PMID: 30964945]
  70. Nat Rev Microbiol. 2017 Jan;15(1):55-63 [PMID: 27694885]
  71. Sci Immunol. 2018 Oct 19;3(28): [PMID: 30341145]
  72. Nat Med. 2017 Mar;23(3):314-326 [PMID: 28112736]
  73. Springer Semin Immunopathol. 2004 Feb;25(3-4):237-55 [PMID: 15007629]
  74. Nature. 2019 Apr;568(7753):499-504 [PMID: 30745586]
  75. Curr Microbiol. 2005 Oct;51(4):270-4 [PMID: 16187156]
  76. Allergy Asthma Clin Immunol. 2005 Jun 15;1(2):81-7 [PMID: 20529228]
  77. PLoS One. 2008 Aug 26;3(8):e3056 [PMID: 18725970]
  78. Nat Immunol. 2017 Sep 19;18(10):1076-1083 [PMID: 28926539]
  79. J Allergy Clin Immunol Pract. 2021 May;9(5):1851-1857 [PMID: 33618052]
  80. Science. 2009 Dec 18;326(5960):1694-7 [PMID: 19892944]
  81. Cell. 2019 Jan 24;176(3):649-662.e20 [PMID: 30661755]
  82. Microb Cell Fact. 2020 Aug 20;19(1):168 [PMID: 32819443]
  83. Eur Arch Otorhinolaryngol. 2019 Jan;276(1):115-130 [PMID: 30446828]
  84. Nature. 2011 May 12;473(7346):174-80 [PMID: 21508958]
  85. Clin Mol Allergy. 2018 Jun 19;16:15 [PMID: 29946225]
  86. Allergy. 2018 Oct;73(10):1954-1963 [PMID: 29869783]
  87. Front Microbiol. 2021 Jun 21;12:688137 [PMID: 34234762]
  88. Sci Rep. 2016 Mar 22;6:23129 [PMID: 27001291]
  89. Immunity. 2017 Apr 18;46(4):562-576 [PMID: 28423337]
  90. Genome Med. 2018 Nov 23;10(1):88 [PMID: 30470248]
  91. Cell. 2021 Jul 22;184(15):3884-3898.e11 [PMID: 34143954]
  92. mBio. 2013 Oct 29;4(6):e00782-13 [PMID: 24169577]
  93. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14 [PMID: 24912386]
  94. World Allergy Organ J. 2015 Jan 27;8(1):4 [PMID: 25628773]
  95. Cell Microbiol. 2018 Dec;20(12):e12966 [PMID: 30329198]
  96. Allergol Immunopathol (Madr). 2022 May 01;50(3):24-37 [PMID: 35527653]
  97. PLoS One. 2014 Mar 10;9(3):e90784 [PMID: 24614698]
  98. Mucosal Immunol. 2021 Mar;14(2):317-330 [PMID: 32541842]
  99. Science. 2006 Jun 2;312(5778):1355-9 [PMID: 16741115]
  100. Am J Rhinol Allergy. 2016 Sep 1;30(5):157-175 [PMID: 27442711]
  101. Front Immunol. 2022 May 19;13:848279 [PMID: 35663980]

Word Cloud

Created with Highcharts 10.0.0microbiotaallergicbodypostbioticsfactorsimmunesystemroleatopicmarchrhinitissitesmetabolicmoderespiratorymaydevelopmentdiseaseprobioticsparabioticsprobioticparabioticStarting"HygieneHypothesis""Microflorahypothesis"providedoverviewsymbioticdynamicequilibriumfocusingdysbiosisparticularlyadventdeepsequencingtechnologiesmetabolomicsallowedusbettercharacterizediversityindividualssitespecificenvironmentalnichesshapesconditioningcolonizationfunctionalitiesanalysispathwaysprovidesmechanisticexplanationremotecommunicationsystemsorgansmicrofloraincludingecosystemuppertractaxisNotablysignificantmaintenancebarrierfunctioninfluenceshematopoiesisinnateimmunityshowscriticalrolesTh1Th2Tregproductionnecessarymaintainimmunologicalbalancepromotetolerancetakingparteverysinglestepinflammatorycascademicrobialbiotherapyfoundationsstartingstill-ongoingprocessconsideringvariousdeterminantscanshapeseveralconsider:geneticenvironmentdeliveryexposureantibioticsallergy-unrelateddiseaseshinderengraftmentstrainsupgradablepostbioticadministrationdirectlymoleculartargetsSupplementationrepresentexcitingperspectivetreatmentbypassinglimitationspresentavenueremainstheoreticalexploredwillcertainlyfascinatingpathfollowREvolutionAllergicRhinitisAdd-OnTherapy:ProbioticsPostbioticsParabioticsinflammation

Similar Articles

Cited By