A Review of Performance Prediction Based on Machine Learning in Materials Science.

Ziyang Fu, Weiyi Liu, Chen Huang, Tao Mei
Author Information
  1. Ziyang Fu: School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China. ORCID
  2. Weiyi Liu: School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. ORCID
  3. Chen Huang: School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China. ORCID
  4. Tao Mei: School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Abstract

With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.

Keywords

References

  1. Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5): [PMID: 34899998]
  2. Nat Mater. 2021 Oct;20(10):1325-1336 [PMID: 34112976]
  3. ACS Nano. 2021 Aug 11;: [PMID: 34379979]
  4. IEEE Trans Pattern Anal Mach Intell. 2022 Jun;44(6):3300-3315 [PMID: 33434123]
  5. Neural Comput. 2019 Jul;31(7):1235-1270 [PMID: 31113301]
  6. Chem Soc Rev. 2021 Jun 21;50(12):6871-6913 [PMID: 33881422]
  7. J Am Chem Soc. 2020 Nov 10;: [PMID: 33170678]
  8. Compr Rev Food Sci Food Saf. 2017 Sep;16(5):1123-1150 [PMID: 33371616]
  9. Chem Soc Rev. 2021 Jun 8;50(11):6541-6568 [PMID: 34100034]
  10. Adv Mater. 2021 Jul;33(28):e2001085 [PMID: 32537860]
  11. IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1765-1776 [PMID: 32997624]
  12. Nat Mater. 2013 Mar;12(3):191-201 [PMID: 23422720]
  13. IEEE Trans Pattern Anal Mach Intell. 2022 Mar 09;PP: [PMID: 35263249]
  14. IEEE Trans Cybern. 2019 Mar;49(3):839-847 [PMID: 29994572]
  15. Sci Adv. 2021 Jul 9;7(28): [PMID: 34244136]
  16. Neuroimage. 2019 Oct 15;200:460-473 [PMID: 31233907]
  17. Small. 2021 Apr;17(15):e2006298 [PMID: 33480476]
  18. Med Image Anal. 2021 Feb;68:101910 [PMID: 33285483]
  19. Nano Today. 2021 Jun;38: [PMID: 33897805]
  20. Adv Mater. 2021 Dec;33(48):e2103477 [PMID: 34580939]
  21. Adv Mater. 2021 Jul;33(26):e2006691 [PMID: 34028107]
  22. Small. 2021 Jun;17(24):e2100336 [PMID: 33984173]
  23. IEEE Trans Pattern Anal Mach Intell. 2022 Mar 24;PP: [PMID: 35324435]
  24. Waste Manag. 2019 Mar 15;87:78-85 [PMID: 31109581]
  25. Adv Mater. 2021 Nov;33(45):e2104060 [PMID: 34569112]
  26. Nature. 2019 Jun;570(7762):484-490 [PMID: 31217587]
  27. Acc Chem Res. 2021 Sep 7;54(17):3288-3297 [PMID: 34448566]
  28. Adv Mater. 2021 May;33(20):e2100210 [PMID: 33829567]
  29. ACS Nano. 2021 Jun 22;15(6):10264-10274 [PMID: 34037372]
  30. Nature. 2016 Jan 28;529(7587):484-9 [PMID: 26819042]
  31. Adv Mater. 2022 Feb;34(8):e2101326 [PMID: 34288155]
  32. Chem Rev. 2021 Feb 24;121(4):2292-2324 [PMID: 33426882]
  33. Chem Soc Rev. 2021 Mar 7;50(5):2927-2953 [PMID: 33481980]
  34. Sci Rep. 2020 Oct 22;10(1):18127 [PMID: 33093549]
  35. ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34157-34167 [PMID: 34255477]
  36. Chem Soc Rev. 2021 Dec 13;50(24):13498-13558 [PMID: 34787136]
  37. J Hazard Mater. 2020 Feb 15;384:121137 [PMID: 31685318]
  38. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33866355]
  39. Nat Biotechnol. 2022 Jun;40(6):921-931 [PMID: 35241840]
  40. Nanomicro Lett. 2020 Jun 13;12(1):126 [PMID: 34138115]
  41. Adv Mater. 2021 Jun;33(23):e2005000 [PMID: 33938612]
  42. J Hazard Mater. 2021 Aug 15;416:125720 [PMID: 33839499]
  43. Adv Mater. 2022 Apr;34(16):e2108079 [PMID: 34963198]
  44. Science. 2017 Jan 6;355(6320):28-29 [PMID: 28059729]
  45. IEEE Trans Pattern Anal Mach Intell. 2021 Oct 01;PP: [PMID: 34596534]
  46. Chem Soc Rev. 2021 Aug 7;50(15):8470-8495 [PMID: 34060549]
  47. IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3733-3748 [PMID: 33476265]
  48. Chem Soc Rev. 2021 Dec 13;50(24):13692-13729 [PMID: 34842873]
  49. Adv Mater. 2022 Jan;34(1):e2101665 [PMID: 34658081]
  50. Nanomicro Lett. 2021 Jun 6;13(1):135 [PMID: 34138364]
  51. Bioresour Technol. 2021 Oct;338:125516 [PMID: 34271499]
  52. Chem Rev. 2020 Feb 26;120(4):2215-2287 [PMID: 32040312]
  53. Science. 2017 Feb 10;355(6325):602-606 [PMID: 28183973]
  54. IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2742-2759 [PMID: 33196437]
  55. Mater Horiz. 2021 Apr 1;8(4):1153-1172 [PMID: 34821909]
  56. Adv Mater. 2022 Jun;34(22):e2101175 [PMID: 34240479]

Grants

  1. 61977021/National Natural Science Foundation of China
  2. 52176185/National Natural Science Foundation of China
  3. 2020AEA008/Hubei Province Technology Innovation Special Project of China
  4. D20201007/Hubei Provincial Department of Education

Word Cloud

Created with Highcharts 10.0.0materialsdesignmaterialpropertieslearningHoweverrationaldiscoverynewhugeprocessMachineMLfieldpredictionincreasingdemandmanyareasconstantlyevolvingstillnumerouspracticalconstraintscancreatetechnologicalsocialimpactrequireholisticmulti-stageincludingcompositionstructurewellengineeringcomplexexplorationusingtraditionalscientificmethodsblindalsowastetimeresourcesusedacrossdatafindcorrelationsunderstandchemicalconsideredwayexplorepaperreviewsmajorrecentadvancesapplicationsdiscusseskeychallengesopportunitiescross-cuttingareaReviewPerformancePredictionBasedLearningMaterialsSciencedeepmachinescienceperformance

Similar Articles

Cited By