Macromolecular Crowding as an Intracellular Stimulus for Responsive Nanomaterials.

Daniel A Estabrook, John O Chapman, Shuo-Ting Yen, Helen H Lin, Ethan T Ng, Linglan Zhu, Heidi L van de Wouw, Otger Campàs, Ellen M Sletten
Author Information
  1. Daniel A Estabrook: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States. ORCID
  2. John O Chapman: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States. ORCID
  3. Shuo-Ting Yen: Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States. ORCID
  4. Helen H Lin: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  5. Ethan T Ng: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  6. Linglan Zhu: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
  7. Heidi L van de Wouw: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States. ORCID
  8. Otger Campàs: Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States.
  9. Ellen M Sletten: Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States. ORCID

Abstract

Stimuli-responsive materials are exploited in biological, materials, and sensing applications. We introduce a new endogenous stimulus, biomacromolecule crowding, which we achieve by leveraging changes in thermoresponsive properties of polymers upon high concentrations of crowding agents. We prepare poly(2-oxazoline) amphiphiles that exhibit lower critical solution temperatures (LCST) in serum above physiological temperature. These amphiphiles stabilize oil-in-water nanoemulsions at temperatures below the LCST but are ineffective surfactants above the LCST, resulting in emulsion fusion. We find that the transformations observed upon heating nanoemulsions above their surfactant's LCST can instead be induced at physiological temperatures through the addition of polymers and protein, rendering thermoresponsive materials "crowding responsive." We demonstrate that the cytosol is a stimulus for nanoemulsions, with droplet fusion occurring upon injection into cells of living zebrafish embryos. This report sets the stage for classes of thermoresponsive materials to respond to macromolecule concentration rather than temperature changes.

References

  1. Nat Commun. 2019 Jun 21;10(1):2749 [PMID: 31227703]
  2. Mol Syst Biol. 2017 Sep 26;13(9):942 [PMID: 28951502]
  3. J Phys Chem B. 2015 Aug 13;119(32):10334-40 [PMID: 26215482]
  4. Biophys J. 2007 Mar 15;92(6):2139-49 [PMID: 17189316]
  5. Langmuir. 2008 Apr 1;24(7):3300-5 [PMID: 18324842]
  6. Nat Mater. 2013 Nov;12(11):991-1003 [PMID: 24150417]
  7. Trends Biochem Sci. 2001 Oct;26(10):597-604 [PMID: 11590012]
  8. ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38887-38898 [PMID: 32706233]
  9. Adv Drug Deliv Rev. 2018 Apr;129:169-193 [PMID: 29501700]
  10. J Am Chem Soc. 2014 Oct 1;136(39):13574-7 [PMID: 25229987]
  11. EMBO J. 2002 Mar 15;21(6):1248-54 [PMID: 11889031]
  12. Curr Opin Struct Biol. 2010 Apr;20(2):196-206 [PMID: 20167475]
  13. Front Bioeng Biotechnol. 2018 Aug 13;6:110 [PMID: 30159310]
  14. J Am Chem Soc. 2020 Sep 16;142(37):16072-16081 [PMID: 32808518]
  15. Chem Commun (Camb). 2008 Nov 30;(44):5758-60 [PMID: 19009072]

Grants

  1. R01 GM135380/NIGMS NIH HHS
  2. T32 GM067555/NIGMS NIH HHS

MeSH Term

Animals
Emulsions
Nanostructures
Polymers
Stimuli Responsive Polymers
Surface-Active Agents
Temperature
Water
Zebrafish

Chemicals

Emulsions
Polymers
Stimuli Responsive Polymers
Surface-Active Agents
Water

Word Cloud

Created with Highcharts 10.0.0materialsLCSTthermoresponsiveupontemperaturesnanoemulsionsstimuluscrowdingchangespolymersamphiphilesphysiologicaltemperaturefusionStimuli-responsiveexploitedbiologicalsensingapplicationsintroducenewendogenousbiomacromoleculeachieveleveragingpropertieshighconcentrationsagentspreparepoly2-oxazolineexhibitlowercriticalsolutionserumstabilizeoil-in-waterineffectivesurfactantsresultingemulsionfindtransformationsobservedheatingsurfactant'scaninsteadinducedadditionproteinrendering"crowdingresponsive"demonstratecytosoldropletoccurringinjectioncellslivingzebrafishembryosreportsetsstageclassesrespondmacromoleculeconcentrationratherMacromolecularCrowdingIntracellularStimulusResponsiveNanomaterials

Similar Articles

Cited By