Informed Bayesian survival analysis.

František Bartoš, Frederik Aust, Julia M Haaf
Author Information
  1. František Bartoš: Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands. f.bartos96@gmail.com.
  2. Frederik Aust: Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
  3. Julia M Haaf: Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.

Abstract

BACKGROUND: We provide an overview of Bayesian estimation, hypothesis testing, and model-averaging and illustrate how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequentist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of evidence, and incorporating uncertainty about the true data generating process.
METHODS: We illustrate the application of the outlined Bayesian approaches on an example data set, retrospective re-analyzing a colon cancer trial. We assess the performance of Bayesian parametric survival analysis and maximum likelihood survival models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study.
RESULTS: In the retrospective re-analysis of the example data set, the Bayesian framework provided evidence for the absence of a positive treatment effect of adding Cetuximab to FOLFOX6 regimen on disease-free survival in patients with resected stage III colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 10.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayesian framework on average reached a decision in almost half the time required by the frequentist counterparts, while maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly elevated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We found no noticeable differences for survival predictions. We have made the analytic approach readily available to other researchers in the RoBSA R package.
CONCLUSIONS: The outlined Bayesian framework provides several benefits when applied to parametric survival analyses. It uses data more efficiently, is capable of considerably shortening the length of clinical trials, and provides a richer set of inferences.

Keywords

References

  1. Stat Med. 2021 Dec 30;40(30):6743-6761 [PMID: 34705280]
  2. J Chronic Dis. 1976 Mar;29(3):175-88 [PMID: 770493]
  3. BMC Med. 2020 Nov 19;18(1):352 [PMID: 33208155]
  4. Pharmacoeconomics. 2013 Aug;31(8):663-75 [PMID: 23673905]
  5. Psychon Bull Rev. 2018 Feb;25(1):128-142 [PMID: 28251595]
  6. Clin Colorectal Cancer. 2005 Sep;5(3):211-3 [PMID: 16197625]
  7. Stat Med. 2000 Dec 15;19(23):3275-89 [PMID: 11113959]
  8. Clin Trials. 2017 Feb;14(1):78-87 [PMID: 27729499]
  9. Stat Med. 2002 Aug 15;21(15):2175-97 [PMID: 12210632]
  10. BMC Med Res Methodol. 2019 Apr 24;19(1):85 [PMID: 31018832]
  11. Stat Med. 2011 May 30;30(12):1329-38 [PMID: 21432893]
  12. Behav Res Methods. 2019 Jun;51(3):1042-1058 [PMID: 30719688]
  13. Biom J. 2007 Jun;49(3):337-45 [PMID: 17623339]
  14. Ann Intern Med. 1999 Jun 15;130(12):1005-13 [PMID: 10383350]
  15. Springerplus. 2013 Dec 11;2:665 [PMID: 24386617]
  16. Stat Methods Med Res. 2018 Feb;27(2):398-413 [PMID: 26994211]
  17. J Clin Epidemiol. 2010 Apr;63(4):355-69 [PMID: 19716263]
  18. Pharmacoeconomics. 2020 Feb;38(2):193-204 [PMID: 31761997]
  19. Perspect Psychol Sci. 2012 Nov;7(6):632-8 [PMID: 26168122]
  20. BMC Med Res Methodol. 2020 Jan 7;20(1):4 [PMID: 31910813]
  21. Psychol Methods. 2017 Jun;22(2):322-339 [PMID: 26651986]
  22. Clin Trials. 2009 Jun;6(3):217-26 [PMID: 19528131]
  23. Pharm Stat. 2014 Jan-Feb;13(1):41-54 [PMID: 23913901]
  24. Stat Med. 1990 Dec;9(12):1439-45 [PMID: 2281231]
  25. Epidemiology. 2001 May;12(3):295-7 [PMID: 11337600]
  26. Int J Technol Assess Health Care. 2019 Jan;35(2):160-167 [PMID: 31017564]
  27. Top Cogn Sci. 2016 Jul;8(3):520-47 [PMID: 27489199]
  28. Psychon Bull Rev. 2004 Feb;11(1):192-6 [PMID: 15117008]
  29. Biostatistics. 2021 Apr 10;22(2):266-282 [PMID: 31373358]
  30. Stat Med. 2014 Oct 30;33(24):4186-201 [PMID: 24957522]
  31. Psychol Methods. 2022 Apr;27(2):177-197 [PMID: 32940511]
  32. Stat Med. 1991 Dec;10(12):1897-913 [PMID: 1805317]
  33. J Clin Epidemiol. 2015 Jan;68(1):52-60 [PMID: 25304503]
  34. Stat Methods Med Res. 2018 Oct;27(10):3167-3182 [PMID: 28322129]
  35. Res Synth Methods. 2023 Jan;14(1):99-116 [PMID: 35869696]
  36. Clin Trials. 2005;2(4):282-90; discussion 301-4, 364-78 [PMID: 16281426]
  37. J Math Psychol. 2017 Dec;81:80-97 [PMID: 29200501]
  38. J Exp Psychol Gen. 2013 May;142(2):573-603 [PMID: 22774788]
  39. Int J Environ Res Public Health. 2021 Jan 10;18(2): [PMID: 33435249]
  40. J Stat Softw. 2017;76: [PMID: 36568334]
  41. Stat Med. 1985 Oct-Dec;4(4):521-6 [PMID: 4089353]
  42. JAMA. 2012 Apr 4;307(13):1383-93 [PMID: 22474202]
  43. J Biopharm Stat. 2008;18(1):54-80 [PMID: 18161542]
  44. Biometrics. 1979 Sep;35(3):549-56 [PMID: 497341]
  45. Psychol Methods. 2023 Feb;28(1):107-122 [PMID: 35588075]
  46. Stat Med. 1982 Jan-Mar;1(1):59-71 [PMID: 7187083]
  47. BMC Med. 2016 Nov 25;14(1):183 [PMID: 27884190]
  48. Psychol Methods. 2020 Apr;25(2):206-226 [PMID: 31497982]
  49. Stat Med. 2019 May 20;38(11):2074-2102 [PMID: 30652356]
  50. Clin Trials. 2010 Feb;7(1):5-18 [PMID: 20156954]
  51. BMC Med Res Methodol. 2019 Sep 2;19(1):182 [PMID: 31477025]
  52. Med Decis Making. 2017 May;37(4):367-376 [PMID: 27281336]
  53. BMC Med Res Methodol. 2020 Dec 10;20(1):300 [PMID: 33302878]
  54. Med Decis Making. 2013 Aug;33(6):743-54 [PMID: 23341049]
  55. Nat Rev Drug Discov. 2006 Jan;5(1):27-36 [PMID: 16485344]
  56. Med Decis Making. 2019 Nov;39(8):899-909 [PMID: 31707911]
  57. Psychon Bull Rev. 2014 Apr;21(2):301-8 [PMID: 24659049]
  58. Nat Hum Behav. 2018 Jan;2(1):6-10 [PMID: 30980045]

MeSH Term

Bayes Theorem
Colonic Neoplasms
Disease-Free Survival
Humans
Research Design
Retrospective Studies

Word Cloud

Created with Highcharts 10.0.0Bayesiansurvivalanalysisframeworkdatafrequentistparametricsetsequentialdesignshigherillustrateapproachevidenceoutlinedexampleretrospectivecoloncancertrialmodelfixed-nsimulationstudytreatmentcounterpartspowerrateresultedtrialsslightlyprovidesBACKGROUND:provideoverviewestimationhypothesistestingmodel-averagingbenefitcontrastcurrentlydominanthighlightadvantagesseamlessincorporationhistoricalcontinuousmonitoringincorporatinguncertaintytruegeneratingprocessMETHODS:applicationapproachesre-analyzingassessperformancemaximumlikelihoodmodelsAIC/BICselectionRESULTS:re-analysisprovidedabsencepositiveeffectaddingCetuximabFOLFOX6regimendisease-freepatientsresectedstageIIIFurthermoreterminated103 monthsearlierstandardaveragereacheddecisionalmosthalftimerequiredmaintainingappropriatefalse-positivemisspecificationfalse-negativecomparedproportionundecidedshowedelevatederrorrateslowerbiasRMSEestimatingeffectssmallsamplesfoundnoticeabledifferencespredictionsmadeanalyticreadilyavailableresearchersRoBSARpackageCONCLUSIONS:severalbenefitsappliedanalysesusesefficientlycapableconsiderablyshorteninglengthclinicalricherinferencesInformedBayesfactorHistoricalModel-averagingSurvival

Similar Articles

Cited By