Yong-Zhi Yang, Min-Xin Luo, Li-Dong Pang, Run-Hong Gao, Jui-Tse Chang, Pei-Chun Liao
Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of , a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of , despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.
Ecol Evol. 2015 Dec 29;6(1):337-48
[PMID:
26811797]
Evolution. 1997 Feb;51(1):21-28
[PMID:
28568782]
Evolution. 1997 Aug;51(4):1044-1048
[PMID:
28565491]
Bioinformatics. 2014 Aug 1;30(15):2114-20
[PMID:
24695404]
Philos Trans R Soc Lond B Biol Sci. 2022 Apr 11;377(1848):20210011
[PMID:
35184593]
PLoS Genet. 2018 Nov 19;14(11):e1007794
[PMID:
30452452]
Genes (Basel). 2021 May 10;12(5):
[PMID:
34068546]
Trends Ecol Evol. 1994 Jun;9(6):223-7
[PMID:
21236827]
Trends Plant Sci. 2022 Jul;27(7):717-728
[PMID:
35282996]
Genet Mol Biol. 2019 Jul-Sep;42(3):624-634
[PMID:
31424071]
Philos Trans R Soc Lond B Biol Sci. 2022 Apr 11;377(1848):20210020
[PMID:
35184598]
BMC Genomics. 2014 Aug 09;15:671
[PMID:
25108399]
Mol Ecol. 2015 Aug;24(16):4323-36
[PMID:
26175277]
Bioinformatics. 2009 Jul 15;25(14):1754-60
[PMID:
19451168]
Gigascience. 2018 Jul 1;7(7):
[PMID:
29917074]
Front Plant Sci. 2018 May 15;9:543
[PMID:
29868044]
Bioinformatics. 2012 Dec 15;28(24):3326-8
[PMID:
23060615]
BMC Genomics. 2013 Jul 18;14:488
[PMID:
23865740]
Evolution. 2008 Feb;62(2):316-36
[PMID:
17999721]
Mol Ecol. 2021 Mar;30(6):1419-1434
[PMID:
33463838]
Genome Res. 2010 Sep;20(9):1297-303
[PMID:
20644199]
Mol Ecol. 2018 May;27(9):2215-2233
[PMID:
29633402]
Proc R Soc Lond B Biol Sci. 1956 Jul 24;145(920):306-8
[PMID:
13359386]
Evolution. 2014 May;68(5):1270-80
[PMID:
24433389]
Mol Ecol. 2013 Jun;22(11):3124-40
[PMID:
23701397]
Plants (Basel). 2020 Feb 05;9(2):
[PMID:
32033313]
Trends Ecol Evol. 2007 Nov;22(11):569-74
[PMID:
17988759]
Mol Biol Evol. 2013 Jul;30(7):1687-99
[PMID:
23543094]
Mol Ecol. 2018 Dec;27(24):5137-5153
[PMID:
30451354]
Am Nat. 2014 Feb;183(2):157-73
[PMID:
24464192]
Plant Cell Rep. 2016 Apr;35(4):803-15
[PMID:
26804987]
Biol Lett. 2013 Apr 03;9(3):20121091
[PMID:
23554278]
Bioinformatics. 2011 Aug 1;27(15):2156-8
[PMID:
21653522]
Mol Ecol. 2020 Nov;29(21):4033-4036
[PMID:
32997363]
Sheng Wu Gong Cheng Xue Bao. 2021 Dec 25;37(12):4329-4341
[PMID:
34984878]
Mol Ecol. 2015 Sep;24(17):4348-70
[PMID:
26184487]
Trends Ecol Evol. 2008 Jul;23(7):347-51
[PMID:
18502536]
PLoS One. 2019 Oct 23;14(10):e0224296
[PMID:
31644601]
J Evol Biol. 2006 Jan;19(1):203-15
[PMID:
16405592]
Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19644-50
[PMID:
19805041]
Mol Ecol. 2020 Nov;29(21):4102-4117
[PMID:
32246535]
Trends Ecol Evol. 2007 Mar;22(3):140-7
[PMID:
17113679]
Ann Bot. 2005 Apr;95(5):843-51
[PMID:
15701663]
Am Nat. 2011 Oct;178 Suppl 1:S97-108
[PMID:
21956095]
PeerJ. 2017 Jul 31;5:e3607
[PMID:
28785518]
Sci Rep. 2019 Aug 19;9(1):12008
[PMID:
31427616]
Bioinformatics. 2009 Aug 15;25(16):2078-9
[PMID:
19505943]
Mol Ecol. 2008 Mar;17(5):1170-88
[PMID:
18302683]
Plant Physiol Biochem. 2018 Sep;130:517-528
[PMID:
30096686]
Genetics. 2008 Jun;179(2):941-50
[PMID:
18505864]
Mol Biol Evol. 2014 Sep;31(9):2483-95
[PMID:
24899666]
BMC Plant Biol. 2013 Jun 05;13:88
[PMID:
23734749]
Mol Ecol. 2018 Jun;27(11):2576-2593
[PMID:
29707847]