A multi-type branching process model for epidemics with application to COVID-19.

Arnab Kumar Laha, Sourav Majumdar
Author Information
  1. Arnab Kumar Laha: Indian Institute of Management Ahmedabad, Ahmedabad, India.
  2. Sourav Majumdar: Indian Institute of Management Ahmedabad, Ahmedabad, India. ORCID

Abstract

In this paper we model an infectious disease epidemic using Multi-type Branching Process where the number of offsprings of different types follow non-identical Poisson distributions whose parameters may vary over time. We allow for variation in parameters due to the behavior of citizens, government interventions in the form of lockdown, testing and contact tracing and the infectiousness of the variant of the virus in circulation at a time-point in a location. The model can be used to estimate several unknown quantities of interest in an epidemic such as the number of undetected cases and number of people quarantined following contact tracing. The model is fitted to the publicly available COVID-19 caseload data of India, South Korea, UK and US and is seen to provide good fit. It also provides good short-term forecast of the caseload for these countries. This model can be useful for health policy planners in assessing the impact of various intervention strategies such as testing, contact tracing, quarantine etc.

References

  1. Math Biosci. 2020 Mar;321:108320 [PMID: 32014418]
  2. Clin Epidemiol Glob Health. 2021 Jan-Mar;9:157-161 [PMID: 32869006]
  3. Lancet Glob Health. 2020 Apr;8(4):e488-e496 [PMID: 32119825]
  4. J R Soc Interface. 2021 Feb;18(175):20200875 [PMID: 33561374]
  5. Curr Psychol. 2022;41(10):7314-7325 [PMID: 34690475]
  6. Nature. 2020 Aug;584(7820):257-261 [PMID: 32512579]
  7. Math Biosci. 2010 May;225(1):24-35 [PMID: 20102724]
  8. Science. 2021 May 21;372(6544):815-821 [PMID: 33853970]
  9. Bull Math Biol. 2022 Aug 24;84(10):105 [PMID: 36001175]
  10. J R Soc Interface. 2008 Aug 6;5(25):885-97 [PMID: 18174112]
  11. Stoch Environ Res Risk Assess. 2021;35(4):797-812 [PMID: 33776559]
  12. J R Soc Interface. 2021 Sep;18(182):20210179 [PMID: 34583564]
  13. J R Soc Interface. 2020 Nov;17(172):20200393 [PMID: 33143594]
  14. Stoch Environ Res Risk Assess. 2022;36(10):2995-3010 [PMID: 35075346]
  15. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  16. J Theor Biol. 2021 Mar 7;512:110536 [PMID: 33186594]
  17. Lancet Infect Dis. 2021 Jan;21(1):27-28 [PMID: 32473661]
  18. Stoch Environ Res Risk Assess. 2022;36(3):893-917 [PMID: 34720737]
  19. Wellcome Open Res. 2020 Jun 15;5:143 [PMID: 34632083]
  20. Epidemics. 2022 Dec;41:100637 [PMID: 36219929]
  21. Nature. 2020 Aug;584(7821):425-429 [PMID: 32604404]
  22. Int J Environ Res Public Health. 2010 Mar;7(3):1186-204 [PMID: 20617026]
  23. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  24. Stoch Environ Res Risk Assess. 2020;34(8):1281-1283 [PMID: 32837310]
  25. Infect Dis Model. 2017 Jun 29;2(3):288-303 [PMID: 29928743]

Word Cloud

Created with Highcharts 10.0.0modelnumbercontacttracingepidemicparameterstestingcanCOVID-19caseloadgoodpaperinfectiousdiseaseusingMulti-typeBranchingProcessoffspringsdifferenttypesfollownon-identicalPoissondistributionswhosemayvarytimeallowvariationduebehaviorcitizensgovernmentinterventionsformlockdowninfectiousnessvariantviruscirculationtime-pointlocationusedestimateseveralunknownquantitiesinterestundetectedcasespeoplequarantinedfollowingfittedpubliclyavailabledataIndiaSouthKoreaUKUSseenprovidefitalsoprovidesshort-termforecastcountriesusefulhealthpolicyplannersassessingimpactvariousinterventionstrategiesquarantineetcmulti-typebranchingprocessepidemicsapplication

Similar Articles

Cited By (1)