An expression-based variant impact phenotyping protocol to predict the impact of gene variants in cell lines.

Alexis M Thornton, Manoj Tumu, Angela N Brooks
Author Information
  1. Alexis M Thornton: Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  2. Manoj Tumu: Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
  3. Angela N Brooks: Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA. Electronic address: anbrooks@ucsc.edu.

Abstract

We describe a bioinformatics protocol for eVIP2 (expression-based variant impact phenotyping). eVIP2 can predict a gene variant's functional impact by comparing gene expression signatures induced by introduction of wild-type versus mutant cDNAs in cell lines. The predicted functional outcomes of the variants include gain-of-function, loss-of-function, change-of-function, or neutral. eVIP2 improves upon eVIP by being applicable to RNA-seq data and providing pathway-level functional predictions for each mutation. Here, we detail how to run eVIP2 on RNA-seq data from two RNF43 variants. For complete details on the use and execution of this protocol, please refer to Thornton et al. (2021).

Keywords

References

  1. Genome Res. 2011 Feb;21(2):193-202 [PMID: 20921232]
  2. Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891 [PMID: 33137190]
  3. Genome Biol. 2016 Jan 26;17:13 [PMID: 26813401]
  4. PLoS Comput Biol. 2021 Jul 2;17(7):e1009132 [PMID: 34214079]
  5. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  6. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  7. Mol Biol Cell. 2022 May 15;33(6):ar49 [PMID: 35353015]
  8. Cell. 2017 Nov 30;171(6):1437-1452.e17 [PMID: 29195078]
  9. Nat Biotechnol. 2022 Jun;40(6):896-905 [PMID: 35058622]
  10. Cancer Cell. 2016 Aug 8;30(2):214-228 [PMID: 27478040]

Grants

  1. T32 HG008345/NHGRI NIH HHS

MeSH Term

Cell Line
Computational Biology
Mutation

Word Cloud

Created with Highcharts 10.0.0eVIP2impactprotocolgenefunctionalvariantsexpression-basedvariantphenotypingpredictexpressioncelllinesRNA-seqdatadescribebioinformaticscanvariant'scomparingsignaturesinducedintroductionwild-typeversusmutantcDNAspredictedoutcomesincludegain-of-functionloss-of-functionchange-of-functionneutralimprovesuponeVIPapplicableprovidingpathway-levelpredictionsmutationdetailruntwoRNF43completedetailsuseexecutionpleasereferThorntonet al2021BioinformaticsCancerGeneGeneticsRNAseq

Similar Articles

Cited By