Surface-Exposed Single-Ni Atoms with Potential-Driven Dynamic Behaviors for Highly Efficient Electrocatalytic Oxygen Evolution.

Yafei Zhao, Xue Feng Lu, Guilan Fan, Deyan Luan, Xiaojun Gu, Xiong Wen David Lou
Author Information
  1. Yafei Zhao: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
  2. Xue Feng Lu: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID
  3. Guilan Fan: School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
  4. Deyan Luan: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID
  5. Xiaojun Gu: School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China. ORCID
  6. Xiong Wen David Lou: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. ORCID

Abstract

Trapping the active sites on the exterior surface of hollow supports can reduce mass transfer resistance and enhance atomic utilization. Herein, we report a facile chemical vapor deposition strategy to synthesize single-Ni atoms decorated hollow S/N-doped football-like carbon spheres (Ni SAs@S/N-FCS). Specifically, the CdS@3-aminophenol/formaldehyde is carbonized into S/N-FCS. The gas-migrated Ni species are anchored on the surface of S/N-FCS simultaneously, yielding Ni SAs@S/N-FCS. The obtained catalyst exhibits outstanding performance for alkaline oxygen evolution reaction (OER) with an overpotential of 249 mV at 10 mA cm , a small Tafel slope of 56.5 mV dec , and ultra-long stability up to 166 hours without obvious fading. Moreover, the potential-driven dynamic behaviors of Ni-N sites and the contribution of the S dopant at different locations in the matrix to the OER activity are revealed by the operando X-ray absorption spectroscopy and theoretical calculations, respectively.

Keywords

References

  1. J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430.
  2. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
  3. S. L. Zhang, B. Y. Guan, X. F. Lu, S. Xi, Y. Du, X. W. Lou, Adv. Mater. 2020, 32, 2002235.
  4. A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901.
  5. Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy 2019, 4, 329.
  6. Y. Pi, Q. Shao, P. Wang, F. Lv, S. Guo, J. Guo, X. Huang, Angew. Chem. Int. Ed. 2017, 56, 4502;
  7. Angew. Chem. 2017, 129, 4573.
  8. A. Grimaud, W. T. Hong, Y. Shao-Horn, J. M. Tarascon, Nat. Mater. 2016, 15, 121.
  9. W. Chen, J. Pei, C. T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W. C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 16086;
  10. Angew. Chem. 2017, 129, 16302.
  11. X. F. Lu, Y. Chen, S. B. Wang, S. Y. Gao, X. W. Lou, Adv. Mater. 2019, 31, 1902339.
  12. T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater. 2018, 30, 1800757.
  13. H. Zhang, W. Zhou, X. F. Lu, T. Chen, X. W. Lou, Adv. Energy Mater. 2020, 10, 2000882.
  14. Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nat. Commun. 2019, 10, 162.
  15. Y. Zhao, H. Zhou, W. Chen, Y. Tong, C. Zhao, Y. Lin, Z. Jiang, Q. Zhang, Z. Xue, W.-C. Cheong, B. Jin, F. Zhou, W. Wang, M. Chen, X. Hong, J. Dong, S. Wei, Y. Li, Y. Wu, J. Am. Chem. Soc. 2019, 141, 10590.
  16. L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. Hernandez, A. DeLaRiva, M. Wang, M. Engelhard, L. Kovarik, A. Datye, Y. Wang, Science 2017, 358, 1419.
  17. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
  18. W. Wang, Y. Wu, T. Liu, Y. Zhao, Y. Qu, R. Yang, Z. Xue, Z. Wang, F. Zhou, J. Long, Z. Yang, X. Han, Y. Lin, M. Chen, L. Zheng, H. Zhou, X. Lin, F. Wu, H. Wang, Y. Yang, Y. Li, Y. Dai, Y. Wu, ACS Catal. 2022, 12, 2632.
  19. Y. Li, Z.-S. Wu, P. Lu, X. Wang, W. Liu, Z. Liu, J. Ma, W. Ren, Z. Jiang, X. Bao, Adv. Sci. 2020, 7, 1903089.
  20. X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Nano-Micro Lett. 2021, 13, 136.
  21. H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
  22. Y. Hou, M. Qiu, M. G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, C. Yuan, L. Lei, X. Feng, Nat. Commun. 2019, 10, 1392.
  23. D. S. Bin, Z. X. Chi, Y. Li, K. Zhang, X. Yang, Y. G. Sun, J. Y. Piao, A. M. Cao, L. J. Wan, J. Am. Chem. Soc. 2017, 139, 13492.
  24. Y. Zhao, Y. Guo, X. F. Lu, D. Luan, X. Gu, X. W. Lou, Adv. Mater. 2022, 34, 2203442.
  25. Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W.-C. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, Y. Li, Adv. Mater. 2018, 30, 1800588.
  26. H. Zhou, T. Liu, X. Zhao, Y. Zhao, H. Lv, S. Fang, X. Wang, F. Zhou, Q. Xu, J. Xu, C. Xiong, Z. Xue, K. Wang, W.-C. Cheong, W. Xi, L. Gu, T. Yao, S. Wei, X. Hong, J. Luo, Y. Li, Y. Wu, Angew. Chem. Int. Ed. 2019, 58, 18388;
  27. Angew. Chem. 2019, 131, 18559.
  28. Y. Zhao, Z. Pei, X. F. Lu, D. Luan, X. Wang, X. W. Lou, Chem Catalysis 2022, 2, 1480.
  29. L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y. W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 2017, 544, 80.
  30. S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Nat. Nanotechnol. 2018, 13, 856.
  31. A. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65.
  32. H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang, H. Lv, S. Fang, Z. Wang, Z. Deng, X. Wang, P. Liu, W. Guo, B. Mao, H. Wang, T. Yao, X. Hong, S. Wei, X. Duan, J. Luo, Y. Wu, J. Am. Chem. Soc. 2020, 142, 12643.
  33. W. Cheng, H. Zhang, D. Luan, X. W. Lou, Sci. Adv. 2021, 7, eabg2580.
  34. Y. Li, S. L. Zhang, W. Cheng, Y. Chen, D. Luan, S. Gao, X. W. Lou, Adv. Mater. 2022, 34, 2105204.
  35. Y. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nat. Catal. 2021, 4, 134.
  36. X. Wang, P. Li, Z. Li, W. Chen, H. Zhou, Y. Zhao, X. Wang, L. Zheng, J. Dong, Y. Lin, X. Zheng, W. Yan, J. Yang, Z. Yang, Y. Qu, T. Yuan, Y. Wu, Y. Li, Chem. Commun. 2019, 55, 6563.
  37. J. Li, M. Li, N. An, S. Zhang, Q. Song, Y. Yang, X. Liu, Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2105628118.
  38. P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2017, 56, 610;
  39. Angew. Chem. 2017, 129, 625.
  40. X. F. Lu, L. Yu, X. W. Lou, Sci. Adv. 2019, 5, eaav6009.
  41. Q. Liu, S. Sun, L. Zhang, Y. Luo, Q. Yang, K. Dong, X. Fang, D. Zheng, A. A. Alshehri, X. Sun, Nano Res. 2022, 15, 6084.
  42. L. Zhang, J. Liang, L. Yue, K. Dong, J. Li, D. Zhao, Z. Li, S. Sun, Y. Luo, Q. Liu, G. Cui, A. A. Alshehri, X. Guo, X. Sun, Nano Res. Energy 2022, 1, e9120028.
  43. L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Nat. Catal. 2019, 2, 134.
  44. Y. Yao, S. Hu, W. Chen, Z. Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. X. Li, P. Strasser, Y. Wu, Y. Li, Nat. Catal. 2019, 2, 304.
  45. G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong, Y. Li, Nat. Commun. 2019, 10, 4855.
  46. L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao, Nat. Commun. 2019, 10, 4849.
  47. Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Adv. Mater. 2015, 27, 6834.
  48. Y. Jin, S. Huang, X. Yue, H. Du, P. K. Shen, ACS Catal. 2018, 8, 2359.
  49. C. Ye, L. Zhang, L. Yue, B. Deng, Y. Cao, Q. Liu, Y. Luo, S. Lu, B. Zheng, X. Sun, Inorg. Chem. Front. 2021, 8, 3162.
  50. T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
  51. Z. P. Wu, H. Zhang, S. Zuo, Y. Wang, S. L. Zhang, J. Zhang, S. Q. Zang, X. W. Lou, Adv. Mater. 2021, 33, 2103004.

Grants

  1. MOE2019-T2-2-049/Ministry of Education of Singapore
  2. 22162019/National Natural Science Foundation of China
  3. 2021GG0195/Science and Technology Projects of Inner Mongolia Autonomous Region

Word Cloud

Created with Highcharts 10.0.0NisitessurfacehollowSAs@S/N-FCSS/N-FCSOERSingle-NiAtomsOxygenEvolutionTrappingactiveexteriorsupportscanreducemasstransferresistanceenhanceatomicutilizationHereinreportfacilechemicalvapordepositionstrategysynthesizesingle-NiatomsdecoratedS/N-dopedfootball-likecarbonspheresSpecificallyCdS@3-aminophenol/formaldehydecarbonizedgas-migratedspeciesanchoredsimultaneouslyyieldingobtainedcatalystexhibitsoutstandingperformancealkalineoxygenevolutionreactionoverpotential249 mV10 mA cmsmallTafelslope565 mV decultra-longstability166 hourswithoutobviousfadingMoreoverpotential-drivendynamicbehaviorsNi-NcontributionSdopantdifferentlocationsmatrixactivityrevealedoperandoX-rayabsorptionspectroscopytheoreticalcalculationsrespectivelySurface-ExposedPotential-DrivenDynamicBehaviorsHighlyEfficientElectrocatalyticElectrocatalysisHollowS/N-DopedCarbonSpheresReaction

Similar Articles

Cited By