Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod.

Reid S Brennan, James A deMayo, Hans G Dam, Michael Finiguerra, Hannes Baumann, Vince Buffalo, Melissa H Pespeni
Author Information
  1. Reid S Brennan: Department of Biology, University of Vermont, Burlington, VT 05405. ORCID
  2. James A deMayo: Department of Marine Sciences, University of Connecticut, Groton, CT 06340. ORCID
  3. Hans G Dam: Department of Marine Sciences, University of Connecticut, Groton, CT 06340. ORCID
  4. Michael Finiguerra: Department of Ecology and Evolutionary Biology, University of Connecticut, Groton, CT 06340. ORCID
  5. Hannes Baumann: Department of Marine Sciences, University of Connecticut, Groton, CT 06340. ORCID
  6. Vince Buffalo: Institute for Ecology and Evolution, University of Oregon, Eugene, OR 97403. ORCID
  7. Melissa H Pespeni: Department of Biology, University of Vermont, Burlington, VT 05405. ORCID

Abstract

Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.

Keywords

References

  1. Glob Chang Biol. 2015 Jun;21(6):2261-71 [PMID: 25430823]
  2. Sci Rep. 2015 Nov 25;5:16923 [PMID: 26603754]
  3. Nat Rev Genet. 2020 Dec;21(12):769-781 [PMID: 32601318]
  4. Mol Biol Evol. 2014 Feb;31(2):474-83 [PMID: 24214537]
  5. Trends Genet. 2016 Jul;32(7):408-418 [PMID: 27185237]
  6. Bioinformatics. 2006 Jul 1;22(13):1600-7 [PMID: 16606683]
  7. Elife. 2019 Jun 06;8: [PMID: 31169497]
  8. Mol Ecol. 2008 Mar;17(6):1451-68 [PMID: 18248575]
  9. Curr Biol. 2010 Feb 23;20(4):R208-15 [PMID: 20178769]
  10. Bioinformatics. 2011 Dec 15;27(24):3435-6 [PMID: 22025480]
  11. Ann Rev Mar Sci. 2009;1:169-92 [PMID: 21141034]
  12. Proc Biol Sci. 2019 Jun 12;286(1904):20190943 [PMID: 31185858]
  13. Trends Ecol Evol. 2008 Jan;23(1):38-44 [PMID: 18006185]
  14. Trends Ecol Evol. 2020 Sep;35(9):809-822 [PMID: 32439075]
  15. Nat Commun. 2014 Apr 16;5:3652 [PMID: 24736548]
  16. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  17. Nature. 2018 Aug;560(7716):88-91 [PMID: 30046104]
  18. Cell Mol Life Sci. 2005 Mar;62(6):670-84 [PMID: 15770419]
  19. Development. 2018 Apr 23;145(8): [PMID: 29636379]
  20. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20672-20680 [PMID: 32817464]
  21. PLoS Genet. 2019 Mar 20;15(3):e1008035 [PMID: 30893299]
  22. PLoS Genet. 2011 Mar;7(3):e1001336 [PMID: 21437274]
  23. Evolution. 2011 Aug;65(8):2229-44 [PMID: 21790571]
  24. Genetics. 2019 Mar;211(3):943-961 [PMID: 30593495]
  25. Genome Biol Evol. 2019 May 1;11(5):1440-1450 [PMID: 30918947]
  26. Science. 2017 Aug 04;357(6350):495-498 [PMID: 28774927]
  27. Biol Bull. 2021 Aug;241(1):30-42 [PMID: 34436966]
  28. Heredity (Edinb). 2015 May;114(5):431-40 [PMID: 25269380]
  29. Nature. 2003 Sep 25;425(6956):365 [PMID: 14508477]
  30. Mol Biol Evol. 2014 Feb;31(2):364-75 [PMID: 24150039]
  31. J Exp Biol. 2015 Jun;218(Pt 12):1856-66 [PMID: 26085663]
  32. Ecol Evol. 2013 Apr;3(4):1016-30 [PMID: 23610641]
  33. Bioinformatics. 2010 Apr 1;26(7):976-8 [PMID: 20179076]
  34. Front Physiol. 2019 Mar 15;10:213 [PMID: 30930787]
  35. Genetics. 2005 Apr;169(4):2335-52 [PMID: 15716498]
  36. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  37. Nat Ecol Evol. 2020 Aug;4(8):1084-1094 [PMID: 32572217]
  38. Glob Chang Biol. 2018 Jun;24(6):2239-2261 [PMID: 29476630]
  39. Proc Biol Sci. 2012 Jan 22;279(1727):349-56 [PMID: 21653591]
  40. Trends Ecol Evol. 2010 Jun;25(6):332-44 [PMID: 20356649]
  41. J Exp Biol. 2020 Oct 27;223(Pt 20): [PMID: 33109621]
  42. Biol Lett. 2013 Jun 05;9(4):20130228 [PMID: 23740296]
  43. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  44. Mol Biol Evol. 2018 Sep 1;35(9):2110-2119 [PMID: 30020488]
  45. Mol Biol Evol. 2006 May;23(5):1076-84 [PMID: 16520336]
  46. PLoS One. 2011 Jan 06;6(1):e15925 [PMID: 21253599]
  47. Evol Appl. 2015 Nov 23;9(9):1112-1123 [PMID: 27695519]
  48. Ann Rev Mar Sci. 2016;8:357-78 [PMID: 26359817]
  49. Glob Chang Biol. 2020 Dec;26(12):6787-6804 [PMID: 32905664]
  50. Genetics. 2016 Oct;204(2):723-735 [PMID: 27542959]
  51. Genome Biol. 2018 Aug 20;19(1):119 [PMID: 30122150]
  52. BMC Genomics. 2014 Mar 28;15:246 [PMID: 24678841]
  53. Glob Chang Biol. 2022 Mar;28(5):1740-1752 [PMID: 33829610]
  54. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9930-9935 [PMID: 28847969]
  55. Evol Lett. 2020 Jan 14;4(1):4-18 [PMID: 32055407]
  56. Genetica. 2007 Feb;129(2):179-92 [PMID: 16915512]
  57. Mol Biol Evol. 2021 Apr 13;38(4):1306-1316 [PMID: 33306808]
  58. PLoS One. 2012;7(11):e48588 [PMID: 23152785]
  59. Science. 2019 Aug 2;365(6452):487-490 [PMID: 31371613]
  60. Nat Commun. 2022 Mar 3;13(1):1147 [PMID: 35241657]
  61. Genome Biol. 2019 Aug 15;20(1):169 [PMID: 31416462]
  62. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  63. Genome Res. 2012 Mar;22(3):568-76 [PMID: 22300766]
  64. Gene Expr Patterns. 2010 Jan;10(1):44-52 [PMID: 19900578]
  65. Genetics. 2019 Nov;213(3):1007-1045 [PMID: 31558582]
  66. Mol Biol Evol. 2017 Nov 1;34(11):3023-3034 [PMID: 28961717]
  67. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  68. PLoS Biol. 2019 Feb 4;17(2):e3000128 [PMID: 30716062]
  69. Annu Rev Physiol. 1999;61:243-82 [PMID: 10099689]
  70. Mol Ecol. 2011 Jun;20(11):2425-41 [PMID: 21521392]

MeSH Term

Acids
Adaptation, Physiological
Animals
Copepoda
Genomics
Global Warming
Homeostasis
Hydrogen-Ion Concentration
Oceans and Seas

Chemicals

Acids

Word Cloud

Created with Highcharts 10.0.0selectionwarmingacidificationOWAadaptationresponsechangeglobalvariationstressorsoceansharedgeneticpopulationsresponsespredictionscopepodmechanismsallelicsynergisticgenomicmultipleevolutionMetazoanreliesstandingDeterminingextentexistsnaturalparticularlysimultaneousessentialmakeaccuratepersistencefutureconditionsidentifiedenablingadaptexperimentalcombined25generationscontinualReplicateshowedconsistentpolygenicconditiontargetingarrayadaptiveincludingcellularhomeostasisdevelopmentstressusedgenome-widecovarianceapproachpartitionchangesthreecategories:driftreplicate-specificlaboratorymajorityallelefrequency57%63%drivenpressuresacrossreplicateseffectweakeralone20%37%just1%indicatingdominantdriverDespitedominanceinteractionstillcriticalhighly47%uniqueeitherindividualtreatmentresultsdisentangletargetsdiffersingledemonstratecomplexitynonadditivewillcontributecomplexenvironmentalshiftscausedExperimentalrevealsmarineevolveresequencezooplankton

Similar Articles

Cited By