Genome-wide detection of copy number variation in American mink using whole-genome sequencing.

Pourya Davoudi, Duy Ngoc Do, Bruce Rathgeber, Stefanie M Colombo, Mehdi Sargolzaei, Graham Plastow, Zhiquan Wang, Karim Karimi, Guoyu Hu, Shafagh Valipour, Younes Miar
Author Information
  1. Pourya Davoudi: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  2. Duy Ngoc Do: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  3. Bruce Rathgeber: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  4. Stefanie M Colombo: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  5. Mehdi Sargolzaei: Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
  6. Graham Plastow: Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
  7. Zhiquan Wang: Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
  8. Karim Karimi: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  9. Guoyu Hu: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  10. Shafagh Valipour: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
  11. Younes Miar: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada. miar@dal.ca.

Abstract

BACKGROUND: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta.
RESULTS: A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3���Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3).
CONCLUSIONS: This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.

Keywords

References

  1. Emerg Infect Dis. 2009 Dec;15(12):2040-2 [PMID: 19961696]
  2. Genome Res. 2011 Jun;21(6):974-84 [PMID: 21324876]
  3. Sci Rep. 2019 Mar 14;9(1):4581 [PMID: 30872653]
  4. PLoS Genet. 2014 Oct 23;10(10):e1004712 [PMID: 25340504]
  5. Cell Mol Life Sci. 2005 Jun;62(12):1363-71 [PMID: 15818466]
  6. Front Immunol. 2021 Apr 19;12:581799 [PMID: 33953705]
  7. Funct Integr Genomics. 2012 Nov;12(4):609-24 [PMID: 22790923]
  8. BMC Genomics. 2021 May 17;22(1):354 [PMID: 34001004]
  9. Hepatology. 2022 Jun;75(6):1507-1522 [PMID: 34689362]
  10. Bioinformatics. 2012 Sep 15;28(18):i333-i339 [PMID: 22962449]
  11. Sci Rep. 2017 Sep 29;7(1):12461 [PMID: 28963476]
  12. Genomics. 2020 Mar;112(2):1477-1480 [PMID: 31450006]
  13. Neuro Oncol. 2020 Jun 9;22(6):806-818 [PMID: 31950181]
  14. F1000Res. 2020 Jul 15;9: [PMID: 33564394]
  15. BMC Genomics. 2015 Jul 04;16:497 [PMID: 26141061]
  16. BMC Genomics. 2019 Apr 27;20(1):321 [PMID: 31029102]
  17. Pigment Cell Res. 2004 Oct;17(5):498-505 [PMID: 15357836]
  18. PLoS One. 2019 Mar 28;14(3):e0214543 [PMID: 30921419]
  19. Int J Mol Sci. 2019 May 20;20(10): [PMID: 31137576]
  20. BMC Genomics. 2021 May 29;22(1):398 [PMID: 34051743]
  21. J Anim Sci. 1984 Jan;58(1):57-61 [PMID: 6698906]
  22. Nat Genet. 2008 Aug;40(8):1004-9 [PMID: 18641652]
  23. Nat Med. 2008 Jul;14(7):738-47 [PMID: 18542050]
  24. Parasite Immunol. 2009 Apr;31(4):177-87 [PMID: 19292769]
  25. Virus Res. 2015 Dec 2;210:327-36 [PMID: 26362524]
  26. BMC Genomics. 2016 May 20;17:379 [PMID: 27206476]
  27. Nat Genet. 2001 Dec;29(4):453-8 [PMID: 11726932]
  28. Gen Comp Endocrinol. 1985 Oct;60(1):109-15 [PMID: 4054583]
  29. JAMA Psychiatry. 2019 Aug 1;76(8):818-825 [PMID: 30994872]
  30. J Natl Cancer Inst. 2013 Apr 17;105(8):573-9 [PMID: 23411593]
  31. Biomed Res Int. 2015;2015:730139 [PMID: 25685806]
  32. Wiley Interdiscip Rev Dev Biol. 2015 May-Jun;4(3):215-66 [PMID: 25772309]
  33. Clin Immunol. 2010 May;135(2):169-82 [PMID: 20189884]
  34. Sci Rep. 2018 Jul 10;8(1):10405 [PMID: 29991772]
  35. Annu Rev Genomics Hum Genet. 2009;10:451-81 [PMID: 19715442]
  36. Animal. 2017 May;11(5):737-745 [PMID: 27819220]
  37. Front Hum Neurosci. 2013 Oct 22;7:671 [PMID: 24155705]
  38. Animals (Basel). 2019 Dec 20;10(1): [PMID: 31877627]
  39. J Genet Genomics. 2012 Jun 20;39(6):281-5 [PMID: 22749016]
  40. Dev Biol. 1999 Mar 1;207(1):133-49 [PMID: 10049570]
  41. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  42. Front Genet. 2020 Mar 13;11:223 [PMID: 32231688]
  43. Pigment Cell Res. 2003 Oct;16(5):523-31 [PMID: 12950732]
  44. BMC Bioinformatics. 2013;14 Suppl 11:S1 [PMID: 24564169]
  45. Sci Rep. 2017 Aug 30;7(1):10063 [PMID: 28855565]
  46. Int J Mol Sci. 2014 Jan 22;15(1):1647-70 [PMID: 24451143]
  47. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  48. Adv Exp Med Biol. 2018;1054:173-183 [PMID: 29797274]
  49. BMC Genomics. 2019 Jan 18;20(1):61 [PMID: 30658572]
  50. FASEB J. 2021 Apr;35(4):e21261 [PMID: 33715225]
  51. Genes (Basel). 2018 Jan 17;9(1): [PMID: 29342086]
  52. Animals (Basel). 2020 Apr 15;10(4): [PMID: 32326606]
  53. Genome Res. 2009 Sep;19(9):1586-92 [PMID: 19657104]
  54. Biol Reprod. 1982 Feb;26(1):110-9 [PMID: 7066451]
  55. BMC Genomics. 2019 Feb 15;20(1):140 [PMID: 30770723]
  56. Comp Biochem Physiol A Mol Integr Physiol. 2019 Oct;236:110529 [PMID: 31310814]
  57. PLoS One. 2018 Sep 27;13(9):e0204669 [PMID: 30261013]
  58. Evolution. 2008 Apr;62(4):979-83 [PMID: 18194469]
  59. Genes (Basel). 2021 Feb 11;12(2): [PMID: 33670138]
  60. Front Genet. 2018 May 15;9:163 [PMID: 29868114]
  61. Cell Rep. 2016 Nov 1;17(6):1518-1531 [PMID: 27806292]
  62. BMC Genomics. 2020 Nov 27;21(1):840 [PMID: 33246410]
  63. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11578-83 [PMID: 21709234]
  64. Int J Mol Sci. 2020 Aug 07;21(16): [PMID: 32784729]
  65. Science. 1998 Jan 23;279(5350):527-33 [PMID: 9438839]
  66. Bioinformatics. 2016 Apr 15;32(8):1220-2 [PMID: 26647377]
  67. J Investig Dermatol Symp Proc. 2005 Dec;10(3):230-3 [PMID: 16382671]
  68. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1996 Sep;115(1):27-32 [PMID: 8983167]
  69. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10964-9 [PMID: 16037214]
  70. Front Genet. 2019 Aug 16;10:737 [PMID: 31475038]
  71. FASEB J. 2006 May;20(7):962-4 [PMID: 16585058]
  72. iScience. 2022 Feb 18;25(2):103760 [PMID: 35036860]
  73. Hum Mol Genet. 2009 Apr 15;18(R1):R1-8 [PMID: 19297395]
  74. Genes Dev. 2000 May 15;14(10):1181-5 [PMID: 10817753]
  75. Genes (Basel). 2022 May 13;13(5): [PMID: 35627260]
  76. Anim Genet. 2020 Aug;51(4):541-556 [PMID: 32510676]
  77. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  78. Front Genet. 2021 May 20;12:670582 [PMID: 34093663]
  79. Genet Sel Evol. 2017 Oct 24;49(1):77 [PMID: 29065859]
  80. BMC Genomics. 2018 Dec 10;19(1):895 [PMID: 30526495]
  81. Sci Rep. 2020 May 15;10(1):8044 [PMID: 32415111]
  82. PLoS One. 2016 Jun 27;11(6):e0157711 [PMID: 27348523]
  83. J Invest Dermatol. 1996 Mar;106(3):559-63 [PMID: 8648194]
  84. BMC Genomics. 2021 May 8;22(1):332 [PMID: 33964879]
  85. Genomics. 2012 Oct;100(4):245-51 [PMID: 22800765]
  86. BMC Genomics. 2020 Oct 1;21(1):682 [PMID: 33004001]
  87. Nat Commun. 2017 Jan 24;8:14061 [PMID: 28117401]
  88. J Invest Dermatol. 2002 Jun;118(6):933-40 [PMID: 12060386]
  89. J Mol Evol. 2020 Jan;88(1):104-119 [PMID: 31522275]
  90. Animals (Basel). 2020 Jun 15;10(6): [PMID: 32549352]
  91. Animals (Basel). 2021 Feb 03;11(2): [PMID: 33546454]
  92. Front Genet. 2014 Feb 18;5:37 [PMID: 24600474]
  93. BMC Genomics. 2008 Apr 14;9:168 [PMID: 18410676]
  94. Front Genet. 2017 Aug 23;8:108 [PMID: 28878807]
  95. Nature. 2011 Feb 3;470(7332):59-65 [PMID: 21293372]
  96. Gen Comp Endocrinol. 1987 Feb;65(2):212-5 [PMID: 3817444]
  97. J Reprod Fertil. 1992 Jul;95(2):325-38 [PMID: 1517991]
  98. Animals (Basel). 2019 Oct 15;9(10): [PMID: 31618984]
  99. Gene. 2015 Jan 25;555(2):88-94 [PMID: 25455099]
  100. Bioinformatics. 2012 Nov 1;28(21):2711-8 [PMID: 22942022]
  101. Front Oncol. 2022 Feb 23;12:858462 [PMID: 35280777]
  102. Genes (Basel). 2021 Sep 23;12(10): [PMID: 34680875]
  103. Mamm Genome. 2002 Oct;13(10):569-77 [PMID: 12420135]
  104. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  105. Genomics. 2011 Mar;97(3):158-65 [PMID: 21111040]
  106. J Invest Dermatol. 2004 Feb;122(2):239-45 [PMID: 15009701]
  107. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  108. Nature. 2009 Oct 8;461(7265):747-53 [PMID: 19812666]
  109. J Clin Invest. 2003 Aug;112(3):450-6 [PMID: 12897212]
  110. Mol Psychiatry. 2020 Apr;25(4):854-862 [PMID: 30679740]
  111. BMC Genomics. 2021 Jan 23;22(1):78 [PMID: 33485316]
  112. PLoS One. 2015 Jul 08;10(7):e0131522 [PMID: 26154170]
  113. Anim Genet. 2021 Jun;52(3):375-379 [PMID: 33778967]
  114. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  115. Gigascience. 2021 Nov 18;10(11): [PMID: 34817058]
  116. BMC Genomics. 2021 Apr 26;22(1):305 [PMID: 33902439]
  117. Anim Genet. 2012 Jun;43(3):282-9 [PMID: 22486499]
  118. J Anim Sci Biotechnol. 2020 Apr 21;11:42 [PMID: 32337028]
  119. Bioinformatics. 2012 Jul 1;28(13):1790-2 [PMID: 22539667]
  120. J Immunol. 2002 Mar 15;168(6):2595-8 [PMID: 11884421]
  121. Sci Rep. 2021 Feb 3;11(1):2944 [PMID: 33536540]
  122. J Anim Breed Genet. 2022 Jul;139(4):476-487 [PMID: 35218589]
  123. BMC Genomics. 2010 May 27;11:337 [PMID: 20507629]
  124. PLoS Genet. 2008 May 16;4(5):e1000074 [PMID: 18483556]
  125. Front Genet. 2019 Oct 29;10:982 [PMID: 31737031]
  126. Nature. 2006 Nov 23;444(7118):444-54 [PMID: 17122850]

MeSH Term

Animals
Chromosome Mapping
DNA Copy Number Variations
Fibroblast Growth Factors
Genome
Mink
Whole Genome Sequencing

Chemicals

Fibroblast Growth Factors

Word Cloud

Created with Highcharts 10.0.0minkCNVsAmericanCNVRnumbervariationCNVgenomegenespathwayssignalingimmuneCopyvariationsstudyfirstgenome-wideanalysisusingwhole-genomeanalysesidentified5378overlappedpotentialregulationmetabolismresponsefurresultssequencingBACKGROUND:representmajorsourcegeneticdiversitycontributephenotypiceconomicallyimportanttraitslivestockspeciesreportsequencedata100individualsperformedthreecomplementarysoftwareprogramsincludingCNVpytorDELLYMantaRESULTS:total164733144517deletions20216duplicationsrepresentingregionsmergingoverlappingcovering473���Mb19%autosomalGeneOntologyKEGGpathwayenrichment1391revealedrolewiderangebiologicalmolecularcellularfunctionsegrelatedgrowthactincytoskeletoncAMPbehavioraxonguidancecircadianentrainmentglutamatergicsynapselipidphospholipidbindingsphingolipidlipolysisadipocytesWntFcreceptorGTPaseregulatoractivityFurthermoreseveralCNVR-harboredassociatedcharacteristicsdevelopmentMYO5ARAB27BFGF12SLC7A11EXOC2systemprocessesSWAP70FYNORAI1TRPM2FOXO3CONCLUSIONS:presentsmapinvestigatedsuggestlinksbehaviourwellpossibleimpactqualityOverallprovidenewresourcesservingguidelinefutureinvestigationsgenomicstructuralpresentGenome-widedetectioncopyWhole-genome

Similar Articles

Cited By