Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range.

Pilar Montes-Lourido, Manaswini Kar, Marianny Pernia, Satyabrata Parida, Srivatsun Sadagopan
Author Information
  1. Pilar Montes-Lourido: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
  2. Manaswini Kar: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
  3. Marianny Pernia: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
  4. Satyabrata Parida: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
  5. Srivatsun Sadagopan: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: vatsun@pitt.edu.

Abstract

For gaining insight into general principles of auditory processing, it is critical to choose model organisms whose set of natural behaviors encompasses the processes being investigated. This reasoning has led to the development of a variety of animal models for auditory neuroscience research, such as guinea pigs, gerbils, chinchillas, rabbits, and ferrets; but in recent years, the availability of cutting-edge molecular tools and other methodologies in the mouse model have led to waning interest in these unique model species. As laboratories increasingly look to include in-vivo components in their research programs, a comprehensive description of procedures and techniques for applying some of these modern neuroscience tools to a non-mouse small animal model would enable researchers to leverage unique model species that may be best suited for testing their specific hypotheses. In this manuscript, we describe in detail the methods we have developed to apply these tools to the guinea pig animal model to answer questions regarding the neural processing of complex sounds, such as vocalizations. We describe techniques for vocalization acquisition, behavioral testing, recording of auditory brainstem responses and frequency-following responses, intracranial neural signals including local field potential and single unit activity, and the expression of transgenes allowing for optogenetic manipulation of neural activity, all in awake and head-fixed guinea pigs. We demonstrate the rich datasets at the behavioral and electrophysiological levels that can be obtained using these techniques, underscoring the guinea pig as a versatile animal model for studying complex auditory processing. More generally, the methods described here are applicable to a broad range of small mammals, enabling investigators to address specific auditory processing questions in model organisms that are best suited for answering them.

Keywords

References

  1. J Neurophysiol. 2000 Aug;84(2):934-52 [PMID: 10938318]
  2. Hear Res. 1995 Dec;92(1-2):85-99 [PMID: 8647749]
  3. J Neurosci. 2020 Jul 1;40(27):5228-5246 [PMID: 32444386]
  4. Exp Brain Res. 2000 Jun;132(4):445-56 [PMID: 10912825]
  5. Elife. 2022 Jan 06;10: [PMID: 34989674]
  6. Neuron. 2011 Dec 8;72(5):847-58 [PMID: 22153379]
  7. Cereb Cortex. 2019 May 1;29(5):1875-1888 [PMID: 29668848]
  8. Hum Gene Ther. 1999 Mar 20;10(5):813-23 [PMID: 10210148]
  9. Hear Res. 2018 Aug;365:62-76 [PMID: 29778290]
  10. J Gene Med. 2008 Jun;10(6):610-8 [PMID: 18338819]
  11. Front Syst Neurosci. 2020 May 12;14:25 [PMID: 32477075]
  12. J Neurosci. 1992 Nov;12(11):4501-9 [PMID: 1331362]
  13. J Neurophysiol. 2013 Aug;110(3):577-86 [PMID: 23596328]
  14. Exp Brain Res. 1991;86(2):384-92 [PMID: 1756813]
  15. Behav Neurosci. 1996 Oct;110(5):905-13 [PMID: 8918994]
  16. J Assoc Res Otolaryngol. 2012 Feb;13(1):1-16 [PMID: 22086147]
  17. eNeuro. 2021 Dec 23;8(6): [PMID: 34799409]
  18. J Neurosci Res. 2004 Oct 1;78(1):75-86 [PMID: 15372491]
  19. J Neurosci. 2016 Jan 06;36(1):54-64 [PMID: 26740649]
  20. Sci Am. 1990 Jun;262(6):60-8 [PMID: 2343295]
  21. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3394-411 [PMID: 14714819]
  22. J Neurosci Methods. 2010 Sep 30;192(1):146-51 [PMID: 20637804]
  23. Hear Res. 2002 Aug;170(1-2):48-58 [PMID: 12208540]
  24. Neuron. 2017 Feb 8;93(3):480-490 [PMID: 28182904]
  25. Anim Behav. 2000 Jun;59(6):1167-1176 [PMID: 10877896]
  26. J Acoust Soc Am. 1996 Jun;99(6):3606-14 [PMID: 8655792]
  27. Exp Brain Res. 2002 Mar;143(1):106-19 [PMID: 11907696]
  28. Eur J Neurosci. 2001 Dec;14(11):1865-80 [PMID: 11860482]
  29. J Neurophysiol. 2018 May 1;119(5):1636-1646 [PMID: 29364068]
  30. Hum Gene Ther. 2001 May 1;12(7):773-81 [PMID: 11339894]
  31. Neuron. 2017 Jul 19;95(2):412-423.e4 [PMID: 28689982]
  32. Exp Brain Res. 2003 Dec;153(4):461-6 [PMID: 13680047]
  33. Hear Res. 1986;23(1):81-91 [PMID: 3733554]
  34. Sci Rep. 2020 Aug 24;10(1):14117 [PMID: 32839492]
  35. Cereb Cortex. 2022 Sep 4;32(18):4080-4097 [PMID: 35029654]
  36. PLoS One. 2012;7(12):e51646 [PMID: 23251604]
  37. Neuron. 2016 Oct 19;92(2):372-382 [PMID: 27720486]
  38. Neurosci Lett. 1992 Oct 26;146(1):37-40 [PMID: 1475047]
  39. J Neurosci. 2013 Jun 26;33(26):10713-28 [PMID: 23804094]
  40. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1657-60 [PMID: 11818566]
  41. Nat Neurosci. 2014 Aug;17(8):1123-9 [PMID: 24997763]
  42. J Neurosci. 2010 May 26;30(21):7314-25 [PMID: 20505098]
  43. eNeuro. 2017 Apr 21;4(2): [PMID: 28451640]
  44. Front Syst Neurosci. 2014 Apr 28;8:65 [PMID: 24808831]
  45. Neuron. 2016 Feb 17;89(4):867-79 [PMID: 26833137]
  46. Neuroreport. 1999 Jul 13;10(10):2067-71 [PMID: 10424676]
  47. Nat Protoc. 2020 Nov;15(11):3615-3631 [PMID: 33046899]
  48. Brain Res. 1983 Jan 31;260(1):1-9 [PMID: 6824946]
  49. J Acoust Soc Am. 2019 Nov;146(5):3743 [PMID: 31795705]
  50. Neurosci Lett. 1992 Aug 17;142(2):228-32 [PMID: 1454221]
  51. Behav Neurosci. 1993 Feb;107(1):82-103 [PMID: 8447960]
  52. PLoS One. 2011;6(10):e26204 [PMID: 22022568]
  53. Neuron. 2008 Apr 10;58(1):132-43 [PMID: 18400169]
  54. Neurosci Lett. 1993 Mar 19;151(2):178-181 [PMID: 8506077]
  55. Nat Neurosci. 2016 Dec;19(12):1743-1749 [PMID: 27798629]
  56. Eur J Neurosci. 2014 Jul;40(2):2427-41 [PMID: 24702651]
  57. Brain Res. 1990 Dec 17;536(1-2):271-86 [PMID: 2085753]
  58. J Comp Neurol. 1989 Apr 22;282(4):489-511 [PMID: 2723149]
  59. Nat Rev Neurosci. 2020 May;21(5):264-276 [PMID: 32269315]
  60. Elife. 2019 Feb 08;8: [PMID: 30735128]
  61. J Comp Neurol. 2005 May 30;486(2):101-16 [PMID: 15844210]
  62. Cereb Cortex. 1995 Jul-Aug;5(4):338-52 [PMID: 7580126]
  63. Hear Res. 1995 Dec;92(1-2):100-11 [PMID: 8647732]
  64. Hear Res. 1998 Jul;121(1-2):11-28 [PMID: 9682804]
  65. PLoS One. 2013 Dec 09;8(12):e81566 [PMID: 24349090]
  66. PLoS One. 2012;7(12):e51318 [PMID: 23251497]
  67. Neuroscience. 2009 Mar 3;159(1):246-58 [PMID: 19084579]
  68. Nat Neurosci. 2020 Dec;23(12):1629-1636 [PMID: 32807948]
  69. Exp Brain Res. 2009 Apr;194(3):395-408 [PMID: 19205681]
  70. J Negat Results Biomed. 2016 May 11;15:10 [PMID: 27164957]
  71. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Oct;195(10):961-9 [PMID: 19756650]
  72. Science. 1980 Sep 12;209(4462):1253-5 [PMID: 7403883]
  73. Laryngoscope. 2002 Aug;112(8 Pt 1):1325-34 [PMID: 12172239]
  74. Nat Rev Neurosci. 2020 Aug;21(8):395-396 [PMID: 32514109]
  75. Arch Ital Biol. 1995 Dec;134(1):57-64 [PMID: 8919192]
  76. Front Neurol. 2014 Oct 24;5:206 [PMID: 25386157]
  77. J Physiol. 2020 Sep;598(17):3765-3785 [PMID: 32538485]
  78. PLoS Biol. 2021 Jun 16;19(6):e3001299 [PMID: 34133413]
  79. Psychophysiology. 2010 Mar 1;47(2):236-46 [PMID: 19824950]
  80. Hear Res. 2020 Oct;396:108070 [PMID: 32950954]
  81. Nat Rev Neurosci. 2010 Aug;11(8):599-605 [PMID: 20648064]
  82. Hear Res. 2002 Jan;163(1-2):46-52 [PMID: 11788198]
  83. PLoS One. 2014 Jul 18;9(7):e102077 [PMID: 25036727]
  84. Exp Brain Res. 2008 Jan;184(2):179-91 [PMID: 17828392]
  85. Sci Rep. 2020 Nov 17;10(1):19945 [PMID: 33203940]
  86. PLoS One. 2018 Aug 2;13(8):e0201771 [PMID: 30071005]
  87. Hear Res. 2005 Nov;209(1-2):97-103 [PMID: 16139975]
  88. J Assoc Res Otolaryngol. 2011 Oct;12(5):605-16 [PMID: 21688060]
  89. Brain Res. 1986 Jan 15;363(1):28-37 [PMID: 3947955]
  90. Hear Res. 2013 Nov;305:102-12 [PMID: 23603138]
  91. J Neurophysiol. 2017 Feb 1;117(2):594-603 [PMID: 27832606]
  92. Front Behav Neurosci. 2016 Jan 26;9:373 [PMID: 26858617]
  93. J Neurosci Methods. 2015 Sep 30;253:90-100 [PMID: 26112334]
  94. J Neural Eng. 2020 Jan 24;17(1):016036 [PMID: 31731284]
  95. Z Tierpsychol. 1976 May;41(1):80-106 [PMID: 961122]
  96. Front Cell Neurosci. 2022 Jan 05;15:814891 [PMID: 35069120]
  97. Hear Res. 2017 Dec;356:51-62 [PMID: 29108871]
  98. Hear Res. 2007 Jun;228(1-2):156-67 [PMID: 17399924]
  99. J Acoust Soc Am. 1971 Jun;49(6):1888-95 [PMID: 5125738]
  100. Nat Neurosci. 2014 Jun;17(6):841-50 [PMID: 24747575]
  101. J Physiol. 2004 Oct 1;560(Pt 1):191-205 [PMID: 15272038]
  102. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7297-E7306 [PMID: 27807140]
  103. Elife. 2022 Oct 13;11: [PMID: 36226815]
  104. Trends Neurosci. 2022 Jan;45(1):64-77 [PMID: 34799134]

Grants

  1. R01 DC013315/NIDCD NIH HHS
  2. R01 DC017141/NIDCD NIH HHS

MeSH Term

Acoustic Stimulation
Animals
Auditory Cortex
Chinchilla
Ferrets
Gerbillinae
Guinea Pigs
Hearing
Models, Animal
Neurons
Rabbits
Vocalization, Animal

Word Cloud

Created with Highcharts 10.0.0modelauditoryanimalguineaprocessingpigneurosciencetoolstechniquesneuralorganismsledresearchpigsuniquespeciesin-vivosmallbestsuitedtestingspecificdescribemethodsquestionscomplexbehavioralresponsesactivityrangegaininginsightgeneralprinciplescriticalchoosewhosesetnaturalbehaviorsencompassesprocessesinvestigatedreasoningdevelopmentvarietymodelsgerbilschinchillasrabbitsferretsrecentyearsavailabilitycutting-edgemolecularmethodologiesmousewaninginterestlaboratoriesincreasinglylookincludecomponentsprogramscomprehensivedescriptionproceduresapplyingmodernnon-mouseenableresearchersleveragemayhypothesesmanuscriptdetaildevelopedapplyanswerregardingsoundsvocalizationsvocalizationacquisitionrecordingbrainstemfrequency-followingintracranialsignalsincludinglocalfieldpotentialsingleunitexpressiontransgenesallowingoptogeneticmanipulationawakehead-fixeddemonstraterichdatasetselectrophysiologicallevelscanobtainedusingunderscoringversatilestudyinggenerallydescribedapplicablebroadmammalsenablinginvestigatorsaddressansweringthemUpdateslow-frequencyhearingAuditorycortexBehaviorElectrophysiologyGuineaOptogeneticsVocalization

Similar Articles

Cited By (2)