Superior quality chemically reduced graphene oxide for high performance EMI shielding materials.

Ramy Sadek, Mohammad S Sharawi, Charles Dubois, Hesham Tantawy, Jamal Chaouki
Author Information
  1. Ramy Sadek: Chemical Engineering Department, Polytechnique Montréal Montréal H3C 3A7 Canada jamal.chaouki@polymtl.ca +1 514 340 4711, ext. 4034. ORCID
  2. Mohammad S Sharawi: Poly-Grames Research Center, Electrical Engineering Department, Polytechnique Montréal Montréal QC H3C 3A7 Canada.
  3. Charles Dubois: Chemical Engineering Department, Polytechnique Montréal Montréal H3C 3A7 Canada jamal.chaouki@polymtl.ca +1 514 340 4711, ext. 4034.
  4. Hesham Tantawy: Chemical Engineering Department, Military Technical College Cairo Egypt. ORCID
  5. Jamal Chaouki: Chemical Engineering Department, Polytechnique Montréal Montréal H3C 3A7 Canada jamal.chaouki@polymtl.ca +1 514 340 4711, ext. 4034.

Abstract

The chemical reduction process of graphene oxide combined with a mild and controllable thermal treatment under vacuum at 200 °C for 4 hours provided a cost-effective, scalable, and high-yield route for Reduced Graphene Oxide (RGO) industrial production and became a potential candidate for producing electromagnetic interference (EMI) shielding. We investigated graphite, and RGO using l-ascorbic acid and Sodium borohydride before and after thermal treatment by carefully evaluating the chemical and morphological structures. The thermally treated l-ascorbic Acid reduction route (TCRGOL) conductivity was 2.14 × 10 S m and total shielding efficiency (SET) based on mass loadings per area of shielding was 94 dB with about one-tenth less graphite weight and surpassing other graphene reduction mechanisms in the frequency range of 8.2-12.4 GHz, , X-band, at room temperature while being tested using the waveguide line technique. The developed treatment represents valuable progress in the path to chemical reduction using a safe reducing agent and offering superior quality RGO rarely achieved with the top-down technique, providing a high EMI shielding performance.

References

  1. Nat Nanotechnol. 2013 Apr;8(4):235-46 [PMID: 23552117]
  2. J Phys Condens Matter. 2015 Jun 10;27(22):223201 [PMID: 25985184]
  3. Nanoscale. 2022 Feb 24;14(8):3269-3278 [PMID: 35166280]
  4. Biomed Res Int. 2015;2015:234098 [PMID: 25811025]
  5. ACS Nano. 2010 Aug 24;4(8):4806-14 [PMID: 20731455]
  6. Sci Rep. 2017 Sep 14;7(1):11538 [PMID: 28912443]
  7. Nanoscale. 2010 Apr;2(4):559-63 [PMID: 20644759]
  8. Chem Soc Rev. 2014 Jan 7;43(1):291-312 [PMID: 24121318]
  9. Chem Commun (Camb). 2010 Feb 21;46(7):1112-4 [PMID: 20126730]
  10. Adv Mater. 2010 Oct 25;22(40):4467-72 [PMID: 20717985]
  11. Nano Lett. 2007 Sep;7(9):2758-63 [PMID: 17655269]
  12. Nanoscale. 2018 Jan 25;10(4):1877-1884 [PMID: 29313048]
  13. J Phys Chem B. 2006 May 4;110(17):8535-9 [PMID: 16640401]
  14. Materials (Basel). 2021 Aug 16;14(16): [PMID: 34443113]
  15. RSC Adv. 2019 Oct 16;9(57):33268-33281 [PMID: 35529140]
  16. Nat Chem. 2009 Aug;1(5):403-8 [PMID: 21378895]
  17. ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4648-58 [PMID: 23672188]
  18. J Am Chem Soc. 2017 Dec 6;139(48):17446-17456 [PMID: 29090921]
  19. Small. 2009 Jan;5(1):82-5 [PMID: 19040216]
  20. Nano Lett. 2009 Apr;9(4):1433-41 [PMID: 19290608]

Word Cloud

Created with Highcharts 10.0.0shieldingreductionchemicalgraphenetreatmentRGOEMIusingoxidethermal4routegraphitel-ascorbictechniquequalityhighperformanceprocesscombinedmildcontrollablevacuum200°Choursprovidedcost-effectivescalablehigh-yieldReducedGrapheneOxideindustrialproductionbecamepotentialcandidateproducingelectromagneticinterferenceinvestigatedacidSodiumborohydridecarefullyevaluatingmorphologicalstructuresthermallytreatedAcidTCRGOLconductivity214×10SmtotalefficiencySETbasedmassloadingsperarea94dBone-tenthlessweightsurpassingmechanismsfrequencyrange82-12GHzX-bandroomtemperaturetestedwaveguidelinedevelopedrepresentsvaluableprogresspathsafereducingagentofferingsuperiorrarelyachievedtop-downprovidingSuperiorchemicallyreducedmaterials

Similar Articles

Cited By