Aerobic exercise training reduces cerebrovascular impedance in older adults: a 1-year randomized controlled trial.

Jun Sugawara, Takashi Tarumi, Changyang Xing, Jie Liu, Tsubasa Tomoto, Evan P Pasha, Rong Zhang
Author Information
  1. Jun Sugawara: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas. ORCID
  2. Takashi Tarumi: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas. ORCID
  3. Changyang Xing: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.
  4. Jie Liu: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas. ORCID
  5. Tsubasa Tomoto: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.
  6. Evan P Pasha: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.
  7. Rong Zhang: Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas. ORCID

Abstract

Older adults have higher cerebrovascular impedance than young individuals which may contribute to chronic brain hypoperfusion. Besides, middle-aged athletes exhibit lower cerebrovascular impedance than their sedentary peers. We examined whether aerobic exercise training (AET) reduces cerebrovascular impedance in sedentary older adults. We conducted a proof-of-concept trial that randomized 73 older adults to 1 yr of AET ( = 36) or stretching and toning (SAT, = 37) interventions. Cerebrovascular impedance was estimated from simultaneous recordings of carotid artery pressure (CAP) via applanation tonometry and cerebral blood flow velocity (CBFV) in the middle cerebral artery via transcranial Doppler using transfer function analysis. Fifty-six participants completed 1-yr interventions, and 41 of those completed cerebrovascular impedance measurements. AET group showed a significant increase in V̇o after the intervention [estimated marginal mean (95% confidence interval); from 22.8 (21.6 to 24.1) to 24.9 (23.6 to 26.2) mL·kg·cm, < 0.001], but not SAT [from 21.7 (20.5 to 22.9) to 22.3 (21.1 to 23.7) mL·kg·cm, = 0.114]. Coherence between changes in CBFV and CAP was >0.90 in the frequency range of 0.78-3.12 Hz. The averaged cerebrovascular impedance modulus () in this frequency range decreased after 1-yr AET [from 1.05 (0.96 to 1.14) to 0.95 (0.92 to 1.06) mmHg·s·cm, = 0.023], but not SAT [from 0.96 (0.87 to 1.04) to 1.01 (0.92 to 1.10) mmHg·s·cm, = 0.138]. Reductions in were correlated positively with reductions in carotid pulse pressure ( = 0.628, = 0.004) and inversely with mean CBFV ( = -0.563, = 0.012) in the AET group. One-year AET reduces cerebrovascular impedance in older adults, which may benefit brain perfusion. Estimation of cerebrovascular impedance is essential for understanding dynamic cerebral blood flow regulation. This randomized controlled trial demonstrated that aerobic exercise training reduced cerebrovascular impedance in older adults, which may benefit brain perfusion.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.19666251

References

  1. J Neurochem. 2018 Mar;144(5):595-608 [PMID: 28986925]
  2. Perspect Clin Res. 2011 Jul;2(3):109-12 [PMID: 21897887]
  3. J Appl Physiol. 1961 Nov;16:971-6 [PMID: 13863013]
  4. J Appl Physiol (1985). 2020 Aug 1;129(2):335-342 [PMID: 32673159]
  5. Neurobiol Aging. 2014 Feb;35(2):365-72 [PMID: 24080175]
  6. Int J Cardiol. 2009 Jul 10;135(3):346-52 [PMID: 18603318]
  7. J Cereb Blood Flow Metab. 2020 Sep;40(9):1879-1889 [PMID: 31564194]
  8. Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1889-95 [PMID: 26112009]
  9. J Neuroimaging. 2007 Jan;17(1):11-8 [PMID: 17238867]
  10. Hypertension. 1995 Jul;26(1):48-54 [PMID: 7607732]
  11. Magn Reson Med. 2021 Oct;86(4):1917-1928 [PMID: 33977546]
  12. Hypertension. 2005 Jul;46(1):200-4 [PMID: 15911742]
  13. Neurology. 2020 May 26;94(21):e2245-e2257 [PMID: 32404355]
  14. J Appl Physiol (1985). 2021 Jan 1;130(1):172-181 [PMID: 33151779]
  15. J Appl Physiol (1985). 2011 Aug;111(2):376-81 [PMID: 21617082]
  16. Am J Physiol Heart Circ Physiol. 2018 Jun 1;314(6):H1214-H1224 [PMID: 29451817]
  17. Am J Physiol Heart Circ Physiol. 2016 Feb 1;310(3):H365-75 [PMID: 26637558]
  18. JAMA. 1965 Nov 8;194(6):646-9 [PMID: 5897239]
  19. J Cereb Blood Flow Metab. 2014 Jun;34(6):971-8 [PMID: 24643081]
  20. Clin Phys Physiol Meas. 1989 Aug;10(3):187-217 [PMID: 2697487]
  21. J Hypertens. 2018 Sep;36(9):1889-1894 [PMID: 29939945]
  22. Stroke. 2013 Nov;44(11):3235-8 [PMID: 23963329]
  23. Brain. 2011 Nov;134(Pt 11):3398-407 [PMID: 22075523]
  24. Age (Dordr). 2013 Jun;35(3):905-20 [PMID: 22669592]
  25. Stroke. 2003 Jul;34(7):1645-9 [PMID: 12791944]
  26. J Cereb Blood Flow Metab. 2021 Jul;41(7):1778-1790 [PMID: 33444091]
  27. Am J Hypertens. 2006 Oct;19(10):1032-6 [PMID: 17027823]
  28. J Appl Physiol (1985). 2020 Jul 1;129(1):27-35 [PMID: 32463732]
  29. J Appl Physiol (1985). 2021 Jul 1;131(1):119-130 [PMID: 34013755]
  30. J Physiol. 2008 Aug 15;586(16):4005-10 [PMID: 18635643]
  31. J Intern Med. 2022 Nov;292(5):788-803 [PMID: 35713933]
  32. Am J Hypertens. 2019 Jan 15;32(2):146-154 [PMID: 30445561]
  33. Eur J Appl Physiol. 2022 Aug;122(8):1843-1856 [PMID: 35522276]
  34. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1466-72 [PMID: 17496216]
  35. Circulation. 2000 Sep 12;102(11):1270-5 [PMID: 10982542]
  36. J Am Coll Cardiol. 1992 Oct;20(4):952-63 [PMID: 1527307]
  37. J Hum Hypertens. 2005 May;19(5):401-6 [PMID: 15729378]
  38. J Appl Physiol (1985). 2005 Sep;99(3):1041-9 [PMID: 15890758]
  39. Stroke. 2016 Sep;47(9):2256-61 [PMID: 27491735]
  40. J Alzheimers Dis. 2021;80(2):841-853 [PMID: 33579857]
  41. Circulation. 2010 Nov 2;122(18):1797-805 [PMID: 20956204]
  42. Circulation. 2000 Sep 19;102(12):1351-7 [PMID: 10993851]
  43. Circulation. 1989 Dec;80(6):1652-9 [PMID: 2598428]
  44. Am J Physiol Heart Circ Physiol. 2021 Jul 1;321(1):H59-H76 [PMID: 34018848]
  45. J Alzheimers Dis. 2020;73(2):489-501 [PMID: 31796677]

Grants

  1. R01 HL102457/NHLBI NIH HHS

MeSH Term

Aged
Humans
Middle Aged
Blood Pressure
Cerebrovascular Circulation
Electric Impedance
Exercise

Word Cloud

Created with Highcharts 10.0.00impedancecerebrovascular1=AETadultsolderexercisetrainingmaybrainaerobicreducestrialrandomizedSATcerebralCBFV2221[fromsedentaryinterventionscarotidarterypressureCAPviabloodflowtransferfunctionanalysiscompleted1-yrgroupmean624923mL·kg·cm7frequencyrange9692mmHg·s·cmbenefitperfusioncontrolledOlderhigheryoungindividualscontributechronichypoperfusionBesidesmiddle-agedathletesexhibitlowerpeersexaminedwhetherconductedproof-of-concept73yr36stretchingtoning37CerebrovascularestimatedsimultaneousrecordingsapplanationtonometryvelocitymiddletranscranialDopplerusingFifty-sixparticipants41measurementsshowedsignificantincreaseV̇ointervention[estimatedmarginal95%confidenceinterval8262<001]2053114]Coherencechanges>09078-312Hzaveragedmodulusdecreased05149506023]87040110138]Reductionscorrelatedpositivelyreductionspulse628004inversely-0563012One-yearEstimationessentialunderstandingdynamicregulationdemonstratedreducedAerobicadults:1-yearagingarterialstiffnesscardiorespiratoryfitness

Similar Articles

Cited By